## JEE (MAIN) 2016

## A. General :

1. Immediately fill in the particulars on this page of the Test Booklet with Blue / Black Ball Point Pen. Use of pencil is strictly prohibited.
2. The answer Sheet is kept inside this Test Booklet. When you are directed to pen the Test Booklet, take out the Answer Sheet and fill in the particulars carefully.
3. The test is of 3 hours duration.
4. The Test Booklet consists of 90 questions. The maximum marks are 360.
5. There are three parts in the question paper A, B, C consisting of Chemistry, Mathematics and Physics having total 30 questions in each part of equal weightage. Each question is allotted 4 (four) marks for correct response.
6. Candidates will be awarded marks as stated above in Instructions No. 5 for correct response of each question. $1 / 4$ (one fourth) marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
7. There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instructions 6 above.
8. Use Blue/Black Ball Point Pen only for writing particulars/marking responses on Side-1 and Side-2 of the Answer Sheet. Use of pencil is strictly prohibited.
9. No candidate is allowed to carry any textual material, printed or written, bits of papers, pager, mobile phone, any electronic device, etc., except the Admit Card inside the examination room/hall.
10. Rough work is to be done on the space provided for this purpose in the Test Booklet only. This space is given at the bottom of each page and in one page at the end of the booklet.
11. On completion of the test, the candidate must hand over the Answer Sheet to the Invigilator on duty in the Room/Hall. However, the candidates are allowed to take away this Test Booklet with them.
12. The CODE for this Booklet is A. Make sure that the CODE printed on Side-2 of the Answer Sheet and also tally the same as that on this booklet. In case of discrepancy, the candidate should immediately report the matter to the invigilator for replacement of both the Test Booklet and the Answer Sheet.
13. Do not fold or make any stray marks on the Answer Sheet.

## PART I - CHEMISTRY

1. A stream of electrons from a heated filament was passed between two charged plates kept at a potential difference $V$ esu. If $e$ and $m$ are charge and mass of an electron, respectively, then the value of $h / \lambda$ (where $\lambda$ is wavelength associated with electron wave) is given by
(A) 2 meV
(B) $\sqrt{\mathrm{meV}}$
(C) $\sqrt{2 m e V}$
(D) meV

Ans. (C)
K.E. $=\mathrm{eV}$
$\lambda \frac{\mathrm{h}}{\sqrt{2 \mathrm{meV}}}$
$\frac{\mathrm{h}}{\lambda}=\sqrt{2 \mathrm{meV}}$
2. 2-chloro-2-methylpentane on reaction with sodium methoxide in methanol yields:
(i)

(ii)

(iii)

(A) (i) and (iii)
(B) (iii) only
(C) (i) and (ii)
(D) All of these

Ans. (4)



Elimination dominate over substitution in the given reaction but all the products are possible.
3. Which of the following compounds is metallic and ferromagnetic ?
(A) $\mathrm{CrO}_{2}$
(B) $\mathrm{VO}_{2}$
(C) $\mathrm{MnO}_{2}$
(D) $\mathrm{TiO}_{2}$

Ans. (A)
4. Which of the following statements about low density polythene is FALSE?
(A) It is a poor conductor of electricity.
(B) Its synthesis required dioxygen or a peroxide initiator as a catalyst.
(C) It is used in the manufacture of buckets, dust-bins etc.
(D) Its synthesis requires high pressure.

Ans. (C)
Low density polythene is not used in the manufacturing of buckets, dust-bins etc. because buckets, dustbins are manufactured by high density polythene.
5. For a linear plot of $\log (x / m)$ versus $\log p$ in a Freundlich adsorption isotherm, which of the following statements is correct? ( k and n are constants)
(A) $1 / n$ appears as the intercept
(B) Only $1 / n$ appears as the slope
(C) $\log (1 / n)$ appears as the intercept
(D) Both $k$ and $1 / n$ appear in the slope term

Ans. (B)
According to the Freundlich adsorption isotherm
$\frac{x}{m}=k P^{1 / n}$
$\log \frac{X}{m}=\log K+\frac{1}{n} \log P$
6. The heats of combustion of carbon and carbon monoxide are -393.5 and $-283.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. The heat of formation (in kJ ) of carbon monoxide per mole is
(A) 676.5
(B) -676.5
(C) -110.5
(D) 110.5

Ans. (C)
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad ; \quad \Delta \mathrm{H}=-393.5 \mathrm{~kJ} / \mathrm{mol}$.
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad ; \quad \Delta \mathrm{H}=-283.5 \mathrm{~kJ} / \mathrm{mol}$.
$\mathrm{C}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad ; \quad \Delta \mathrm{H}=-393.5+283.5 \mathrm{~kJ} / \mathrm{mol}=-110 \mathrm{~kJ} / \mathrm{mol}$
7. The hottest region of Bunsen flame shown in the figure is
(A) region 2
(B) region 3
(C) region 4
(D) region 1


Ans. (A)
8. Which of the following is an anionic detergent?
(A) Sodium lauryl sulphate
(B) Cetyltrimethyl ammonium bromide
(C) Glyceryl oleate
(D) Sodium stearate

Ans. (A)
Sodium lauryl sulphate = detergent, anionic
Cetyltrimethyl ammonium bromide = detergent, cationic
Glyceryl oleate = detergent, non-ionic
Sodium stearate = soap, anionic
9. $\quad 18 \mathrm{~g}$ glucosse $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is added to 178.2 g water. The vapor pressure of water (in torr) for this aqueous solution is.
(A) 76.0
(B) 752.4
(C) 759.0
(D) 7.6

Ans. (B)
Moles of glucose $=\frac{18}{180}=0.1$
Moles of water $=\frac{178.2}{18}=9.9$
$\Rightarrow \mathrm{N}_{\text {Total }}=10$
$\Rightarrow \frac{\Delta \mathrm{P}}{\mathrm{P}^{\circ}}=\frac{0.1}{10}$
$\Rightarrow \Delta P=0.01 P^{\circ}$
$=0.01 \times 760=7.6$ torr
$\mathrm{Ps}_{\mathrm{s}}=760-7.6$
$=752.4$ torr
10. The distillation technique most suited for separating glycerol from spent-lye in the soap industry is
(A) Fractional distillation
(B) Steam distillation
(C) Distillation under reduced pressure
(D) Simple distillation

Ans. (C)
Glycerol is high boiling liquid with B.P. $290^{\circ} \mathrm{C}$. It can be separated from spent-lye by distillation under reduced pressure. Liquid is made to boil at lower temperature than normal temperature by lowering pressure on its surface, so external pressure is reduced and B.P. of liquid is lowered hence glycerol is obtained without decomposition at high temperature.
11. The species in which the N atom is in a state of sp hybridization is
(A) $\mathrm{NO}_{2}^{-}$
(B) $\mathrm{NO}_{3}^{-}$
(C) $\mathrm{NO}_{2}$
(D) $\mathrm{NO}_{2}^{+}$

Ans. (D)
$\mathrm{NO}_{2}^{-}=\mathrm{sp}^{2}$
$\mathrm{NO}_{3}^{-}=\mathrm{sp}^{2}$
$\mathrm{NO}_{2}=\mathrm{sp}^{2}$
$\mathrm{NO}_{2}^{+}=\mathrm{sp}$
12. Decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ follows a first order reaction. In fifty minutes the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ decreases from 0.5 to 0.125 M in one such decomposition. When the concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ reaches 0.05 M , the rate of formation of $\mathrm{O}_{2}$ will be
(A) $6.93 \times 10^{-4} \mathrm{~mol} \mathrm{~min}^{-1}$
(B) $2.66 \mathrm{~L} \mathrm{~min}^{-1}$ at STP
(C) $1.34 \times 10^{-2} \mathrm{~mol} \mathrm{~min}^{-1}$
(D) $6.93 \times 10^{-2} \mathrm{~mol} \mathrm{~min}^{-1}$

Ans. (A)
In 50 minutes, concentration of $\mathrm{H}_{2} \mathrm{O}_{2}$ becomes $\frac{1}{4}$ of initial.
$\Rightarrow 2 \times \mathrm{t}_{1 / 2}=50$ minutes
$\Rightarrow t_{1 / 2}=25$ minutes
$\Rightarrow \mathrm{K}=\frac{0.693}{25}$ pre minutes
$\mathrm{r}_{\mathrm{H}_{2} \mathrm{O}_{2}}=\frac{0.693}{25} \times 0.05=1.386 \times 10^{-3}$
$2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
$\mathrm{r}_{\mathrm{O}_{2}}=\frac{1}{2} \times \mathrm{r}_{\mathrm{H}_{2} \mathrm{O}_{2}}$
$\mathrm{r}_{\mathrm{O}_{2}}=0.693 \times 10^{-3}$
$r_{O_{2}}=6.93 \times 10^{-4} \mathrm{~mol} /$ minute $\times$ litre
13. The pair having the same magnetic moment is: [At. $\mathrm{No} .: \mathrm{Cr}=24, \mathrm{Mn}=25, \mathrm{Fe}=26, \mathrm{Co}=27$ ]
(A) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(B) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(C) $\left[\mathrm{CoCl}_{4}\right]^{2-}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(D) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{CoCl}_{4}\right]^{2-}$

Ans. (A)
Each $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
Contain 4 unpaired electron.
14. The absolute configuration of

(A) $(2 S, 3 R)$
(B) $(2 S, 3 S)$
(C) $(2 R, 3 R)$
(D) $(2 R, 3 S)$

Ans. (A)


IUPAC numbering


Numbering according to CIP rules for $R / S$ naming
15. The equilibrium constant at 298 K for a reaction $A+B \rightleftharpoons C+D$ is 100 . If the initial concentration of all the four species were 1 M each, then equilibrium concentration of $D$ (in mol $L-1$ ) will be
(A) 0.818
(B) 1.818
(C) 1.182
(D) 0.182

Ans. (B)

|  | A | + | B | $\rightleftharpoons$ | C | + |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}=0$ | 1 |  | 1 |  | 1 |  |  |
| $\mathrm{t}_{\text {eq }}$ | $1-\mathrm{x}$ |  | $1-\mathrm{x}$ |  |  |  |  |

$\Rightarrow \quad \frac{(1+x)^{2}}{(1-x)^{2}}=100 \quad \Rightarrow \frac{1+x}{1-x}=10$
$\Rightarrow 1+x=10-10 x \Rightarrow 11 x=9$
$\Rightarrow x=\frac{9}{11}$
$\Rightarrow[D]=1+\frac{9}{11}$
$\Rightarrow[D]=1.818$
16. Which one of the following ores is best concentrated by froth floatation method?
(A) Siderite
(B) Galena
(C) Malachite
(D) Magnetite

Ans. (B)
Galena $=$ PbS
For sulphur ores froth floatation is carried out.
17. At 300 K and $1 \mathrm{~atm}, 15 \mathrm{~mL}$ of a gaseous hydrocarbon requires 375 mL air containing $20 \% \mathrm{O}_{2}$ by volume for complete combustion. After combustion the gases occupy 330 mL . Assuming that the water formed is in liquid form and the volumes were measured at the same temperature and pressure, the formula of the hydrocarbon is
(A) $\mathrm{C}_{3} \mathrm{H}_{8}$
(B) $\mathrm{C}_{4} \mathrm{H}_{8}$
(C) $\mathrm{C}_{4} \mathrm{H}_{10}$
(D) $\mathrm{C}_{3} \mathrm{H}_{6}$

Ans. (A)
$\mathrm{C}_{x} \mathrm{H}_{y}(\mathrm{~g})+\left(\mathrm{x}+\frac{\mathrm{y}}{4}\right) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{xCO}_{2}(\mathrm{~g})+\frac{\mathrm{y}}{2} \mathrm{H}_{2} \mathrm{O}(\ell) 15 \mathrm{ml}$
Volume of $\mathrm{O}_{2}$ used $=\frac{20}{100} \times 375=75 \mathrm{ml}$

Volume of air remaining $=300 \mathrm{ml}$
Total volume of gas left after combustion $=330 \mathrm{ml}$
Volume of $\mathrm{CO}_{2}$ gases after combustion $=330-300=30 \mathrm{ml}$.
$\begin{array}{ll}\mathrm{C}_{x} \mathrm{H}_{\mathrm{y}}(\mathrm{g})+\left(\mathrm{x}+\frac{\mathrm{y}}{4}\right) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow & \mathrm{xCO}_{2}(\mathrm{~g})+\frac{\mathrm{y}}{2} \mathrm{H}_{2} \mathrm{O}(\ell) \\ 15 \mathrm{ml} & 75 \mathrm{ml} \\ & 30 \mathrm{ml}\end{array}$
$\frac{x}{1}=\frac{30}{15} \Rightarrow x=2$
$\frac{x+\frac{y}{4}}{1}=\frac{75}{15} \Rightarrow x+\frac{y}{4}=5$
$\Rightarrow \mathrm{y}=12$
$\Rightarrow \mathrm{C}_{12} \mathrm{H}_{12}$
Confirmed:
Such compound is impossible and also not in option. So it should be bonus.
However if we seriously wish to give an answer then by looking at options, we can see that only $\mathrm{C}_{3} \mathrm{H}_{8}$ is able to consume $75 \mathrm{ml} \mathrm{O}_{2}$. So (A) can also be given as answer.
18. The pair in which phosphorous atoms have a formal oxidation state of +3 is:
(A) Pyrophosphorous and hypophosphoric acids
(B) Orthophosphorous and hypophosphoric acids
(C) Pyrophosphorous and pyrophosphoric acids
(D) Orthophosphorous and pyrophosphorous acids

Ans. (D)
Orthophosphorous acid $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$
Pyrophosphorous acid $\left(\mathrm{H}_{2} \stackrel{+3}{2}_{2} \mathrm{O}_{5}\right)$
19. Which one of the following complexes shows optical isomerism ?
(A) cis[Co(en) $\left.{ }_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
(B) $\operatorname{trans}\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
(C) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
(D) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$
(en = ethylenediamine)

Ans. (A)
With coordination number six, if two bidentate ligands in cis-position are present, then it is optically active.
20. The reaction of zinc with dilute and concentrated nitric acid, respectively, produces:
(A) $\mathrm{NO}_{2}$ and NO
(B) NO and $\mathrm{N}_{2} \mathrm{O}$
(C) $\mathrm{NO}_{2}$ and $\mathrm{N}_{2} \mathrm{O}$
(D) $\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{NO}_{2}$

Ans. (D)

$$
\begin{aligned}
& \mathrm{Zn}+\mathrm{HNO}_{3}(\text { dil. }) \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(\text { aq })+\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \\
& \left.\mathrm{Zn}+\mathrm{HNO}_{3} \text { (conc. }\right) \rightarrow \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

21. Which one of the following statements about water is FALSE ?
(A) Water can act both as an acid and as a base.
(B) There is extensive intramolecular hydrogen bonding in the condensed phase.
(C) Ice formed by heavy water sinks in normal water.
(D) Water is oxidized to oxygen during photosynthesis.

Ans. (B)
There is extensive intermolecular hydrogen bonding in the condensed phase.
22. The concentration of fluoride, lead, nitrate and iron in a water sample from an undergroud lake was found to be $1000 \mathrm{ppb}, 40 \mathrm{ppb}, 100 \mathrm{ppm}$ and 0.2 ppm , respectively. This water is unsuitable for drinking due to high concentration of :
(A) Lead
(B) Nitrate
(C) Iron
(D) Fluoride

Ans. (B)
Highest concentration is of nitrate ( 100 pm )
23. The main oxides formed on combustion of $\mathrm{Li}, \mathrm{Na}$ and K in excess of air are, respectively:
(A) $\mathrm{LiO}_{2}, \mathrm{Na}_{2} \mathrm{O}_{2}$ and $\mathrm{K}_{2} \mathrm{O}$
(B) $\mathrm{Li}_{2} \mathrm{O}_{2}, \mathrm{Na}_{2} \mathrm{O}_{2}$ and $\mathrm{KO}_{2}$
(C) $\mathrm{Li}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}_{2}$ and $\mathrm{KO}_{2}$
(D) $\mathrm{Li}_{2} \mathrm{O}, \mathrm{Na}_{2} \mathrm{O}$ and $\mathrm{KO}_{2}$

Ans. (C)
$\mathrm{Li}+\underset{\text { (excess) }}{\mathrm{O}_{2}(\mathrm{~g})} \rightarrow \mathrm{Li}_{2} \mathrm{O}$
$\mathrm{Na}+\underset{\text { (excess) }}{\mathrm{O}_{2}(\mathrm{~g})} \rightarrow \mathrm{Na}_{2} \mathrm{O}_{2}$
$\mathrm{K}+\underset{\text { (excess) }}{\mathrm{O}_{2}(\mathrm{~g})} \rightarrow \mathrm{KO}_{2}$
24. Thiol group is present in :
(A) Cystine
(B) Cysteine
(C) Methionine
(D) Cytosine

Ans. (B)

Cystine


Cysteine
 Thiol group (SH) is present in cysteine


25. Galvanization is applying a coating of :
(A) Cr
(B) Cu
(C) Zn
(D) Pb

Ans. (C)
Galvanization is applying a coating of Zn .
26. Which of the following atoms has the highest first ionization energy ?
(A) Na
(B) K
(C) Sc
(D) Rb

Ans. (C)
I. $P_{1}=S c>N a>K>R b$
27. In the Hofmann bromamide degradation reaction, the number of moles of NaOH and $\mathrm{Br}_{2}$ used per mole of amine produced are :
(A) Four moles of NaOH and two moles of $\mathrm{Br}_{2}$
(B) Two moles of NaOH and two moles of $\mathrm{Br}_{2}$
(C) Four moles of NaOH and one mole of $\mathrm{Br}_{2}$
(D) One mole of NaOH and one mole of $\mathrm{Br}_{2}$

Ans. (C)
Hofmann bromamide degradation reaction


1 mole bromine and 4 moles of NaOH are used for per mole of amine produced.
28. Two closed bulbs of equal volume (V) containing an ideal gas initially at pressure pi and temperature $\mathrm{T}_{1}$ are connected through a narrow tube of negligible volume as shown in the figure below. The temperature of one of the bulbs is then raised to $T_{2}$. The final pressure $p_{f}$ is

(A) $2 p_{i}\left(\frac{T_{1}}{T_{1}+T_{2}}\right)$
(B) $2 p_{i}\left(\frac{T_{2}}{T_{1}+T_{2}}\right)$
(C) $2 p_{i}\left(\frac{T_{1} T_{2}}{T_{1}+T_{2}}\right)$
(D) $p_{i}\left(\frac{T_{1} T_{2}}{T_{1}+T_{2}}\right)$

Ans. (B)
Initial moles $=$ final moles
$\frac{P_{i} \times V}{R T_{1}}+\frac{P_{i} \times V}{R T_{1}}=\frac{P_{f} \times V}{R T_{2}}+\frac{P_{f} \times V}{R T_{1}}$
$\frac{P_{i}}{T_{1}}+\frac{P_{i}}{T_{1}}=\frac{P_{f}}{T_{2}}+\frac{P_{f}}{T_{1}}$
$\frac{2 P_{i}}{T_{1}}=P_{f}\left[\frac{1}{T_{2}}+\frac{1}{T_{1}}\right]$
$\frac{2 P_{i}}{T_{1}}=P_{f}\left[\frac{T_{1}+T_{2}}{T_{1} T_{2}}\right]$
$\mathrm{P}_{\mathrm{f}}=2 \mathrm{P}_{\mathrm{i}} \times\left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}+\mathrm{T}_{2}}\right)$
29. The reaction of propene with $\mathrm{HOCl}\left(\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}\right)$ proceeds through the intermediate
(A) $\mathrm{CH}_{3}-\mathrm{CH}^{+}-\mathrm{CH}_{2}-\mathrm{Cl}$
(B) $\mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})-\mathrm{CH}_{2}^{+}$
(C) $\mathrm{CH}_{3}-\mathrm{CHCl}-\mathrm{CH}_{2}^{+}$
(D) $\mathrm{CH}_{3}-\mathrm{CH}^{+}-\mathrm{CH}_{2}-\mathrm{OH}$

Ans. (A)
30. The product of the reaction give below is

(A)

(B)

(C)

(D)


Ans. (A)



## PART II: MATHEMATICS

31. Two sides of a rhombus are along the lines, $x-y+1=0$ and $7 x-y-5=0$. if its diagonals intersect at $(-1,-2)$, then which one of the following is a vertex of this rhombus?
(A) $(-3,-8)$
(B) $\left(\frac{1}{3},-\frac{8}{3}\right)$
(C) $\left(-\frac{10}{3},-\frac{7}{3}\right)$
(D) $(-3,-9)$

Ans. (B)


On solving equation of $A B$ \& $A D$
vertex $A(1,2)$
$\because P$ is mid point of $A C$. Hence vertex $C$ is $(-3,-6)$.
So equation of other two sides are $7 x-y+15=0$ and $x-y-3=0$.
Hence other vertices are $\left(\frac{1}{3},-\frac{8}{3}\right)$ and $\left(-\frac{7}{3},-\frac{4}{3}\right)$
32. If the $2^{\text {nd }}, 5^{\text {th }}$ and $9^{\text {th }}$ terms of a non-constant A.P. are in G.P., then the common ratio of this G.P. is:
(A) $\frac{4}{3}$
(B) 1
(C) $\frac{7}{4}$
(D) $\frac{8}{5}$

Ans. (A)
$a+d, a+4 d, a+8 d \rightarrow G . P$
$\therefore(a+4 d)^{2}=a^{2}+9 a d+8 d^{2}$
$\Rightarrow 8 d^{2}=a d \Rightarrow a=8 d$
$\therefore 9 d, 12 d, 16 d \rightarrow$ G.P.
common ratio $r=\frac{12}{9}=\frac{4}{3}$
33. Let $P$ be the point on the parabola, $y^{2}=8 x$ which is at a minimum distance from the centre $C$ of the circle, $x^{2}+(y+6)^{2}=1$. Then the equation of the circle, passing through $C$ and having its centre at $P$ is
(A) $x^{2}+y^{2}-x+4 y-12=0$
(B) $x^{2}+y^{2}-\frac{x}{4}+2 y-24=0$
(C) $x^{2}+y^{2}-4 x+9 y+18=0$
(D) $x^{2}+y^{2}-4 x+8 y+12=0$

Ans. (D)

$$
y=-t x+2 a t+a t^{3}
$$


$-6=4 \mathrm{t}+2 \mathrm{t}^{3}$
$t^{3}+2 t+3=0$
$(t+1)\left(t^{2}-t+3\right)=0$
$t=-1$
$\Rightarrow(\mathrm{x}-2)^{2}+(\mathrm{y}+4)^{2}=\mathrm{r}^{2}=8$
$4+4=r^{2}$
$x^{2}+y^{2}-4 x+8 y+12=0$
34. The system of linear equations
$x+\lambda y-z=0$
$\lambda x-y-z=0$
$x+y-\lambda z=0$
has a non-trivial solution for :
(A) Exactly one value of $\lambda$
(B) Exactly two values of $\lambda$
(C) Exactly three values of $\lambda$
(D) Infinitely many values of $\lambda$

Ans. (C)
$\left|\begin{array}{ccc}1 & \lambda & -1 \\ \lambda & -1 & -1 \\ 1 & 1 & -\lambda\end{array}\right|=0$
$1(\lambda+1)-\lambda\left(-\lambda^{2}+1\right)-1(\lambda+1)=0$
$\lambda+1+\lambda^{3}-\lambda-\lambda-1=0$
$\lambda^{3}-\lambda=0$
35. If $f(x)+2 f\left(\frac{1}{x}\right)=3 x, x \neq 0$, and $S=\{x \in R: f(x)=f(-x)\}$; then $S$
(A) contains exactly one element
(B) contains exactly two elements.
(C) contains more than two elements
(D) is an empty set

Ans. (B)
$f(x)+2 f\left(\frac{1}{x}\right)=3 x$
$S: f(x)=f(-x)$
$\because f(x)+2 f\left(\frac{1}{x}\right)=3 x$
$x \rightarrow \frac{1}{x} \quad f\left(\frac{1}{x}\right)+2 f(x)=\frac{3}{x}$
(1) $-2 \times(2)-3 f(x)=3 x-\frac{6}{x} f(x)=\frac{2}{x}-x$

Now $f(x)=f(-x)$
$\therefore \frac{2}{\mathrm{x}}-\mathrm{x}=-\frac{2}{\mathrm{x}}+\mathrm{x} \frac{4}{\mathrm{x}}=2 \mathrm{x}$
$\frac{2}{x}=x \quad \Rightarrow x= \pm \sqrt{2}$
Exactly two elements
36. Let $p=\lim _{x \rightarrow 0^{+}}\left(1+\tan ^{2} \sqrt{x}\right)^{1 / 2 x}$ then $\log p$ is equal to
(A) 1
(B) $\frac{1}{2}$
(C) $\frac{1}{4}$
(D) 2

Ans. (B)
$P=\lim _{x \rightarrow 0^{+}}\left(1+\tan ^{2} \sqrt{x}\right)^{1 / 2 x}$ then $\log p=$
$P=e^{\lim _{x \rightarrow 0^{+}}\left(1+\tan ^{2} \sqrt{x}-1\right)^{1 / 2 x}}=e^{\lim _{x \rightarrow 0^{+}} \frac{(\tan \sqrt{x})^{2}}{2(\sqrt{x})^{2}}}=e^{1 / 2}$
$\log P=\log e^{1 / 2}=\frac{1}{2}$
37. A value of $\theta$ for which $\frac{2+3 i \sin \theta}{1-2 i \sin \theta}$ is purely imaginary, is
(A) $\frac{\pi}{6}$
(B) $\sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)$
(C) $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
(D) $\frac{\pi}{3}$

Ans. (C)
$\frac{2+3 i \sin \theta}{1-2 i \sin \theta} \times \frac{1+2 i \sin \theta}{1+2 i \sin \theta}$
$2-6 \sin ^{2} \theta=0$ (For purely imaginary)
$\sin ^{2} \theta=\frac{1}{3}$
$\sin \theta=\frac{1}{\sqrt{3}}$
$\theta=\sin ^{-1} \frac{1}{\sqrt{3}}$
38. The eccentricity of the hyperbola whose length of the latus rectum is equal to 8 and the length of its conjugate axis is equal to half of the distance between its foci, is
(A) $\frac{4}{\sqrt{3}}$
(B) $\frac{2}{\sqrt{3}}$
(C) $\sqrt{3}$
(D) $\frac{4}{3}$

Ans. (B)
Given $2 \mathrm{~b}=\frac{1}{2} \cdot(2 \mathrm{ae}) \Rightarrow \mathrm{b}=\frac{\mathrm{ae}}{2}$
$\Rightarrow a^{2}\left(e^{2}-1\right)=\frac{a^{2} e^{2}}{4} \Rightarrow 3 e^{2}=4 \Rightarrow e=\frac{2}{\sqrt{3}}$
39. If the standard deviation of the numbers 2,3 , a and 11 is 3.5 , then which of the following is true?
(A) $3 \mathrm{a}^{2}-32 \mathrm{a}+84=0$
(B) $3 a^{2}-34 a+91=0$
(C) $3 \mathrm{a}^{2}-23 \mathrm{a}+44=0$
(D) $3 \mathrm{a}^{2}-26 \mathrm{a}+55=0$

Ans. (A)
Standard deviation of numbers 2,3 , a and 11 is 3.5
$\therefore(3.5)^{2}=\frac{\sum \mathrm{x}_{\mathrm{i}}^{2}}{4}(\overline{\mathrm{x}})^{2}$
$\Rightarrow(3.5)^{2}=\frac{4+9+\mathrm{a}^{2}+121}{4}-\left(\frac{2+3+\mathrm{a}+11}{4}\right)^{2}$
on solving, we get $3 a^{2}-32 a+84=0$
40. The integral $\int \frac{2 x^{12}+5 x^{9}}{\left(x^{5}+x^{3}+1\right)^{3}} d x$ is equal to
(A) $\frac{x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C$
(B) $\frac{x^{5}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C$
(C) $\frac{-x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C$
(D) $\frac{-x^{5}}{\left(x^{5}+x^{3}+1\right)^{2}}+C$
where C is an arbitrary constant
Ans. (A)
$\int \frac{2 x^{12}+5 x^{9}}{\left(x^{5}+x^{3}+1\right)^{3}} d x$
$\int \frac{\left(\frac{2}{x^{3}}+\frac{5}{x^{6}}\right)}{\left(1+\frac{1}{x^{2}}+\frac{1}{x^{5}}\right)^{3}} d x$
Let $1+\frac{1}{x^{2}}+\frac{1}{x^{5}}=t$
$\frac{d t}{d x}=\frac{-2}{x^{3}}-\frac{5}{x^{6}}$
$\int \frac{-d t}{t^{3}}=\frac{1}{2 t^{2}}+C=\frac{1}{2\left(1+\frac{1}{x^{2}}+\frac{1}{x^{5}}\right)^{2}}+C=\frac{x^{10}}{2\left(x^{5}+x^{3}+1\right)^{2}}+C$
41. If the line, $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$ lies in the plane, $l x+m y-z=9$, then $I^{2}+m^{2}$ is equal to
(A) 18
(B) 5
(C) 2
(D) 26

Ans. (C)
(i) $(3,-2,-4)$ lies on the plane
$\therefore 3 \ell-2 m+4=9 \Rightarrow 3 \ell-2 m=5$
(ii) $2 \ell-\mathrm{m}-3=0 \Rightarrow 2 \ell-\mathrm{m}=3$
from (i) and (ii)
$\ell=1$ and $\mathrm{m}=-1$
42. If $0 \leq x<2 \pi$, then the number of real values of $x$, which satisfy the equation $\cos x+\cos 2 x+\cos 3 x+$ $\cos 4 x=0$, is
(A) 5
(B) 7
(C) 9
(D) 3

Ans. (B)
$0 \leq x<2 \pi$
$\cos x+\cos 2 x+\cos 3 x+\cos 4 x=0$
$(\cos x+\cos 4 x)+(\cos 2 x+\cos 3 x)=0$
$2 \cos \frac{5 x}{2} \cos \frac{3 x}{2}+2 \cos \frac{5 x}{2} \cos \frac{x}{2}=0$
$2 \cos \frac{5 x}{2}\left[2 \cos x \cos \frac{x}{2}\right]=0$
$\cos \frac{5 x}{2}=0$ or $\cos x=0$ or $\cos \frac{x}{2}=0$
$x=\frac{(2 n+1) \pi}{5}$ or $x=(2 n+1) \frac{\pi}{2}$ or $x=(2 n+1) \pi$
$\mathrm{x}=\left\{\frac{\pi}{3}, \frac{3 \pi}{5}, \pi, \frac{7 \pi}{5}, \frac{9 \pi}{5}, \frac{\pi}{2}, \frac{3 \pi}{2}\right\}$
Number of solution is 7
43. The area (in sq.units) of the region $\left\{(x, y): y^{2} \geq 2 x\right.$ and $\left.x^{2}+y^{2} \leq 4 x, x \geq 0, y \geq 0\right\}$ is
(A) $\pi-\frac{8}{3}$
(B) $\pi-\frac{4 \sqrt{2}}{3}$
(C) $\frac{\pi}{2}-\frac{2 \sqrt{2}}{3}$
(D) $\pi-\frac{4}{3}$

Ans. (A)
$\mathrm{y}^{2}=2 \mathrm{x}$ and $\mathrm{x}^{2}+\mathrm{y}^{2}=4 \mathrm{x}$ meet at $\mathrm{O}(0,0)$ and $\mathrm{B}(2,2)\{(2,-2)$ is not considered as $\mathrm{x}, \mathrm{y} \geq 0\}$


Now required area $=($ Area of quadrant of circle $)-\frac{2}{3}($ Area of rectangle OABC $)$
$=\pi-\frac{2}{3} \cdot(2.2)=\pi-\frac{8}{3}$
44. Let $\vec{a}, \vec{b}$ and $\vec{c}$ be three unit vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\sqrt{3}}{2}(\vec{b}+\vec{c})$. If $\vec{b}$ is to parallel to $\vec{c}$, then the angle between $\vec{a}$ and $\vec{b}$ is
(A) $\frac{\pi}{2}$
(B) $\frac{2 \pi}{3}$
(C) $\frac{5 \pi}{6}$
(D) $\frac{3 \pi}{4}$

Ans. (C)
$\vec{a} \times(\vec{b} \times \vec{c})=\frac{\sqrt{3}}{2}(\vec{b}+\vec{c})$
$(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=\frac{\sqrt{3}}{2} \vec{b}+\frac{\sqrt{3}}{2} \vec{c}$

Hence $\vec{a} \cdot \overrightarrow{\mathrm{c}}=\frac{\sqrt{3}}{2}$ and $\overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{b}}=-\frac{\sqrt{3}}{2}$
$\cos \theta=-\frac{\sqrt{3}}{2}$
$\theta=\frac{5 \pi}{6}$
45. A wire of length 2 units is cut into two parts which are bent respectively to form a square of side $=x$ units and a circle of radius $=r$ units. If the sum of the areas of the square and the circle so formed is minimum, then
(A) $(4-\pi) x=\pi r$
(B) $x=2 r$
(C) $2 x=r$
(D) $2 x=(\pi+4) r$

Ans. (B)
$4 x+2 \pi r=2$
$x^{2}+\pi r^{2}=$ minimum $\Rightarrow$ So, $f(r)=\left(\frac{1-\pi r}{2}\right)^{2}+\pi r^{2}$
$\frac{d f}{d r}=\pi^{2} \frac{r}{2}-\frac{\pi}{2}+2 \pi r=0 \Rightarrow r=\frac{1}{\pi+4}$
using equation (i) $x=\frac{(1-\pi r)}{2}$
46. The distance of the point $(1,-5,9)$ from the plane $x-y+z=5$ measured along the line $x=y=z$ is
(A) $10 \sqrt{3}$
(B) $\frac{10}{\sqrt{3}}$
(C) $\frac{20}{3}$
(D) $3 \sqrt{10}$

Ans. (A)


Equation of line $P Q: \frac{x-1}{1}=\frac{y+5}{1}=\frac{z-9}{1}=\lambda$
$\therefore Q$ can be taken as $(\lambda+1, \lambda-5, \lambda+9)$
As $Q$ lies on plane $x-y+z=5$
$\therefore(\lambda+1)-(\lambda-5)+(\lambda+9)=5$
$\lambda=-10 \Rightarrow Q(-9,-15,-1)$
$\therefore$ Required distance $P Q=\sqrt{(1+9)^{2}+(-5+15)^{2}+(9+1)^{2}}=\sqrt{100+100+100}=10 \sqrt{3}$
47. If a curve $y=f(x)$ passes through the point $(1,-1)$ and satisfies the differential equation, $y(1+x y) d x=x d y$, then $f\left(-\frac{1}{2}\right)$ is equal to
(A) $-\frac{4}{5}$
(B) $\frac{2}{5}$
(C) $\frac{4}{5}$
(D) $-\frac{2}{5}$

Ans. (C)
$y(1+x y) d x=x d y$
$y d x-x d y+x y^{2} d x=0$
$y^{2} d\left(\frac{x}{y}\right)+x y^{2} d x=0$
$\frac{x}{y}+\frac{x^{2}}{2}=C$
$(1,-1)$ satisfies
$-1+\frac{1}{2}=C \Rightarrow C=-\frac{1}{2}$
Put in (i) $x=-\frac{1}{2}$
$\frac{-\frac{1}{2}}{y}+\frac{\frac{1}{4}}{2}=-\frac{1}{2} \quad \Rightarrow \quad \frac{-1}{2 y}=\frac{-1}{2}-\frac{1}{8}$
$\frac{1}{2 y}=\frac{5}{8}$
$y=\frac{4}{5}$
48. If the number of terms in the expansion of $\left(1-\frac{2}{x}+\frac{4}{x^{2}}\right)^{n}, x \neq 0, x \neq 0$, is 28 , then the sum of the coefficients of all the term in this expansion, is
(A) 2187
(B) 243
(C) 729
(D) 64

Ans. (C)
Theoretically the number of terms are $2 \mathrm{~N}+1$ (i.e. odd) But As the number of terms being odd hence considering that number clubbing of terms is done hence the solutions follows
Number of terms $={ }^{n+2} \mathrm{C}_{2}=28 \therefore \mathrm{n}=6$
sum of coefficient $=3^{n}=3^{6}=729$
put $\mathrm{x}=1$
49. Consider $f(x)=\tan ^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right), x \in\left(0, \frac{\pi}{2}\right)$. A normal to $y=f(x)$ at $x=\frac{\pi}{6}$ also passes through the point:
(A) $\left(0, \frac{2 \pi}{3}\right)$
(B) $\left(\frac{\pi}{6}, 0\right)$
(C) $\left(\frac{\pi}{4}, 0\right)$
(D) $(0,0)$

Ans. (A)
at $\mathrm{x}=\frac{\pi}{6} \quad \Rightarrow \mathrm{y}=\frac{\pi}{3}$
$f(x)=\tan ^{-1}\left(\left|\frac{\cos \frac{x}{2}+\sin \frac{x}{2}}{\cos \frac{x}{2}-\sin \frac{x}{2}}\right|\right) \quad \because x \in\left(0, \frac{\pi}{2}\right)$
$=\tan ^{-1}\left(\tan \left(\frac{\pi}{4}+\frac{x}{2}\right)\right)$
$f(x)=\frac{\pi}{4}+\frac{x}{2} \quad f^{\prime}(x)=\frac{1}{2}$
slope of normal $=-2$
equation of normal $y-\frac{\pi}{3}=-2\left(x-\frac{\pi}{6}\right)$
$y=-2 x+\frac{2 \pi}{3}$
50. For $x \in R, f(x)=|\log 2-\sin x|$ and $g(x)=f(f(x))$, then
(A) $g^{\prime}(0)=\cos (\log 2)(B) g^{\prime}(0)=-\cos (\log 2)$
(C) $g$ is differentiable at $x=0$ and $g^{\prime}(0)=-\sin (\log 2)$
(D) $g$ is not differentiable at $x=0$

Ans. (A)
$f(x)=|\ell n 2-\sin x|$
$\mathrm{f}(\mathrm{f}(\mathrm{x}))=|\ell \mathrm{n} 2-\sin | \ell \mathrm{n} 2-\sin \mathrm{x}$
In the vicinity of $x=0$
$\mathrm{g}(\mathrm{x})=\ell \mathrm{n} 2-\sin (\ell \mathrm{n} 2-\sin \mathrm{x})$
Hence $g(x)$ is differentiable at $x=0$ as it is sum and composite of differentiable function
$g^{\prime}(x)=\cos (\ell n 2-\sin x) \cdot \cos x$
$\mathrm{g}^{\prime}(\mathrm{x})=\cos (\ell \mathrm{n} 2)$
51. Let two fair six-faced dice $A$ and $B$ be thrown simultaneously. If $E_{1}$ is the event that die $A$ shows up four, $E_{2}$ is the event that die $B$ shows up two and $E_{3}$ is the event that the sum of numbers on both dice is odd, then which of the following statements is NOT True ?
(A) $E_{2}$ and $E_{3}$ are independent
(B) $\mathrm{E}_{1}$ and $\mathrm{E}_{3}$ are independent
(C) $E_{1}, E_{2}$ and $E_{3}$ are independent
(D) $E_{1}$ and $E_{2}$ are independent

Ans. (C)
$\mathrm{E}_{1}:\{(4,1)$
6 cases
$\mathrm{E}_{2}:\{(1,2)$,
6 cases
$\mathrm{E}_{3}: 18$ cases (sum of both are odd) $\}$
$P\left(E_{1}\right)=\frac{6}{36}=\frac{1}{6}=P\left(E_{2}\right)$
$P\left(E_{3}\right)=\frac{18}{36}=\frac{1}{2}$
$P\left(E_{1} \cap E_{2}\right)=\frac{1}{36}$
$P\left(E_{2} \cap E_{3}\right)=\frac{1}{12}$
$P\left(E_{3} \cap E_{1}\right)=\frac{1}{12}$
$P\left(E_{1} \cap E_{2} \cap E_{3}\right)=0$
$\therefore \mathrm{E}_{1}, \mathrm{E}_{2}, \mathrm{E}_{3}$ are not independent
52. If $A=\left[\begin{array}{cc}5 a & -b \\ 3 & 2\end{array}\right]$ and $A$ adj $A=A A^{\top}$, then $5 a+b$ is equal to
(A) 5
(B) 4
(C) 13
(D) -1

Ans. (A)
$|A| I=A A^{\top}$
$\Rightarrow(10 a+3 b)\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}5 a & -b \\ 3 & 2\end{array}\right]\left[\begin{array}{cc}5 a & 3 \\ -b & 2\end{array}\right]$
$\Rightarrow 25 \mathrm{a}^{2}+\mathrm{b}^{2}=10 \mathrm{a}+3 \mathrm{~b}$ and $15 \mathrm{a}-2 \mathrm{~b}=0$ and $10 \mathrm{a}+3 \mathrm{~b}=13$
$\Rightarrow 10 \mathrm{a}+\frac{3.15 \mathrm{a}}{2}=13 \Rightarrow 65 \mathrm{a}=2 \times 13$
$\Rightarrow \mathrm{a}=\frac{2}{5} \Rightarrow 5 \mathrm{a}=2$
$\Rightarrow 2 \mathrm{~b}=6 \Rightarrow \mathrm{~b}=3$
$\therefore 5 \mathrm{a}+\mathrm{b}=5$
53. The Boolean Expression $(p \wedge \sim q) \vee q \vee(\sim p \wedge q)$ is equivalent to
(A) $p \wedge q$
(B) $p \vee q$
(C) $p \vee \sim q$
(D) $\sim p \wedge q$

Ans. (B)
$[(p \wedge \sim q) \vee q] \vee(\sim p \wedge q)$
$=(p \vee q) \wedge(\sim q \vee q) \vee(\sim p \wedge q)$
$=(p \vee q) \wedge[t \vee(\sim p \wedge q)]$
$=(p \vee q) \wedge t$
$=p \vee q$
54. The sum of all real values of $x$ satisfying the equation $\left(x^{2}-5 x+5\right)^{x^{2}+4 x-60}=1$ is
(A) -4
(B) 6
(C) 5
(D) 3

Ans. (D)
$\left(x^{2}-5 x+5\right)^{x^{2}+4 x-60}=1$
$x^{2}-5 x+5=1 \quad x^{2}+4 x-60=0 \quad x^{2}-5 x+5=-1$
$x^{2}-5 x+4=0 \quad x=-10, x=6 \quad x^{2}-5 x+6=0$
$x=1, x=4 \quad x=2,3$
at $x=2, x^{2}+4 x-60=-48$ (even)
$\therefore \mathrm{x}=2$ is valid
at $x=3, x^{2}+4 x-60=-39$ (odd)
$\therefore \mathrm{x}=3$ is invalid
$x=1,2,4,6,-10$
55. The centres of those circles which touch the circle, $x^{2}+y^{2}-8 x-8 y-4=0$, externally and also touch the x-axis, lie on
(A) an ellipse which is not a circle
(B) a hyperbola
(C) a parabola
(D) a circle

Ans. (C)

Property : distance from a fixed point \& fixed line is equal

56. If all the words (with or without meaning) having five letters, formed using the letters of the word SMALL and arranged as in a dictionary; then the position of the word SMALL is
(A) 59
(B) 52
(C) 58
(D) 46

Ans. (C)

## SMALL

A_--- \# $\quad \frac{4!}{2!}=12$
L__-_\# $4!=24$
$M_{----} \# \quad \frac{4!}{2!}=12$
SA_-_ \# $\frac{3!}{2!}=3$
SL___\# $3!=6$
SMALL \# 1
$58^{\text {th }}$ position
57. $\lim _{n \rightarrow \infty}\left(\frac{(n+1)(n+2) \ldots \ldots .3 n}{n^{2 n}}\right)^{1 / n}$ is equal to
(A) $\frac{27}{\mathrm{e}^{2}}$
(B) $\frac{9}{\mathrm{e}^{2}}$
(C) $3 \log 3-2$
(D) $\frac{18}{\mathrm{e}^{4}}$

Ans. (A)
$p=\lim _{n \rightarrow \infty}\left(\frac{(n+1)(n+2) \ldots . .(n+2)}{n^{2 n}}\right)$
$\log p=\frac{1}{n}\left(\lim _{n \rightarrow \infty} \sum_{r=1}^{2 n} \log \left(1+\frac{r}{n}\right)\right)$
$\log p=\int_{0}^{2} \log (1+x) d x$
$\log p=(x \log (1+x))_{0}^{2}-\int_{0}^{2} \frac{x}{1+x} d x$
$\log \mathrm{p}=2 \log 3-\int_{0}^{2}\left(1-\frac{1}{1+\mathrm{x}}\right) \mathrm{dx}$
$\log p=2 \log 3-(x-\log (1+x))_{0}^{2}$
$\log p=2 \log 3-(2-\log 3)$
$\log \mathrm{p}=3 \log 3-2=\log \frac{27}{\mathrm{e}^{2}}$
$\mathrm{p}=\frac{27}{\mathrm{e}^{2}}$
58. If the sum of the first ten terms of the series $\left(1 \frac{3}{5}\right)^{2}+\left(2 \frac{2}{5}\right)^{2}+\left(3 \frac{1}{5}\right)^{2}+4^{2}+\left(4 \frac{4}{5}\right)^{2}+\ldots .$. , is $\frac{16}{5} m$, then $m$ is equal to
(A) 101
(B) 100
(C) 99
(D) 102

Ans. (A)

$$
\begin{aligned}
&\left(\frac{8}{5}\right)^{2}+\left(\frac{12}{5}\right)^{2}+\left(\frac{16}{5}\right)^{2}+\left(\frac{20}{5}\right)^{2}+\left(\frac{24}{5}\right)^{2}+\ldots .=\frac{8^{2}}{5^{2}}+\frac{12^{2}}{5^{2}}+\frac{16^{2}}{5^{2}}+\frac{20^{2}}{5^{2}}+\frac{24^{2}}{5^{2}}+\ldots . . \\
& T_{n}=\frac{(4 n+4)^{2}}{5^{2}} \\
& S_{n}=\frac{1}{5^{2}} \sum_{n=1}^{10} 16(n+1)^{2}=\frac{16}{25} \sum_{n=1}^{10}\left(n^{2}+2 n+1\right) \\
&=\frac{16}{25}\left[\frac{10 \times 11 \times 21}{6}+\frac{2 \times 10 \times 11}{2}+10\right]=\frac{16}{25} \times 505=\frac{16}{5} m \Rightarrow m=101
\end{aligned}
$$

59. If one of the diameters of the circle, given by the equation, $x^{2}+y^{2}-4 x+6 y-12=0$, is a chord of a circle $S$, whose centre is at $(-3,2)$, then the radius of $S$ is
(A) $5 \sqrt{3}$
(B) 5
(C) 10
(D) $5 \sqrt{2}$

Ans. (A)

$r_{1}=\sqrt{4+9+12}=5 \quad \Rightarrow R=\sqrt{25+50}=5 \sqrt{3}$
60. A man is walking towards a vertical pillar in a straight path, at a uniform speed. At a certain point A on the path, he observes that the angle of elevation of the top of the pillar is $30^{\circ}$, After walking for 10 minutes from $A$ in the same direction, at a point $B$, he observes that the angle of elevation of the top of the pillar is $60^{\circ}$. Then the time taken (in minutes) by him, from $B$ to reach the pillar, is
(A) 10
(B) 20
(C) 5
(D) 6

Ans. (C)

$\tan 30^{\circ}=\frac{x}{y+z}=\frac{1}{\sqrt{3}} \Rightarrow \sqrt{3} x=y+z \Rightarrow \tan 60^{\circ}=\frac{x}{y}=\sqrt{3} \Rightarrow x=\sqrt{3} y=y+z$

$$
3 y=y+z \quad \Rightarrow 2 y=z
$$

for 2 y distance time $=10 \mathrm{~min}$.
so for y dist time $=5 \mathrm{~min}$.

## PART III: PHYSICS

61. A uniform string of length 20 m is suspended from a rigid support. A short wave pulse is introduced at its lowest end. It starts moving up the string. The time taken to reach the support is :
(take $\mathrm{g}=10 \mathrm{~ms}^{-2}$ )
(A) 2 s
(B) $2 \sqrt{2} \mathrm{~s}$
(C) $\sqrt{2} \mathrm{~s}$
(D) $2 \pi \sqrt{2} \mathrm{~s}$

Ans. (B)
Let mass per unit length be $\lambda$.

$\mathrm{T}=\lambda \mathrm{gx} \quad \mathrm{v}=\sqrt{\frac{\mathrm{T}}{\lambda}}=\sqrt{\mathrm{gx}}$
$v^{2}=g x, a=\frac{v d v}{d x}=\frac{g}{2}$
$\ell=\frac{1}{2} \frac{\mathrm{~g}}{2} \mathrm{t}^{2} \Rightarrow \mathrm{t}=\sqrt{\frac{4 \ell}{\mathrm{~g}}}=2 \sqrt{2} \mathrm{sec}$
62. A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.

Assume that the potential energy lost each time he lowers the mass is dissipated. How much fat will he use up considering the work done only when the weight is lifted up ? Fat supplies $3.8 \times 10^{7} \mathrm{~J}$ of energy per kg which is converted to mechanical energy with a $20 \%$ efficiency rate.
Take $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$
(A) $6.45 \times 10^{-3} \mathrm{~kg}$
(B) $9.89 \times 10^{-3} \mathrm{~kg}$
(C) $12.89 \times 10^{-3} \mathrm{~kg}$
(D) $2.45 \times 10^{-3} \mathrm{~kg}$

Ans. (C)
Let m mass of fat is used.
$\mathrm{m}\left(3.8 \times 10^{7}\right) \frac{1}{5}=10(9.8)(1)(1000)$
$\mathrm{m}=\frac{9.8 \times 5}{3.8 \times 10^{3}}$
$=12.89 \times 10^{-3} \mathrm{~kg}$
63. A point particle of mass $m$, moves along the uniformly rough track PQR as shown in the figure. The coefficient of friction, between the particle and the rough track equals $\mu$. The particle is released, from rest, from the point P and it comes to rest at a point R. The energies, lost by the ball, over the parts, $P Q$ and QR, of the track, are equal to each other, and no energy is lost when particle changes direction from PQ to QR. The values of the coefficient of friction $\mu$ and the distance $x(=Q R)$, are, respectively close to

(A) 0.2 and 3.5 m
(B) 0.29 and 3.5 m
(C) 0.29 and 6.5 m
(D) 0.2 and 6.5 m

Ans. (B)


Given that $\frac{\mu \mathrm{mgh}}{\tan \theta}=\mathrm{mgh}-\frac{\mu \mathrm{mgh}}{\tan \theta}$
$\frac{2 \mu}{\tan \theta}=1 \Rightarrow \mu=\frac{\tan \theta}{2}$
$\mu=0.29$
$x=\frac{h}{\tan \theta}=2 \sqrt{3} \square 3.5 \mathrm{~m}$
64. Two identical wires $A$ and $B$, each of length $I$, carry the same current I. Wire $A$ is bent into a circle of radius $R$ and wire $B$ is bent to form a square of side 'a'. If $B_{A}$ and $B_{B}$ are the values of magnetic field at the centres of the circle and square respectively, then the ratio $\frac{B_{A}}{B_{B}}$ is
(A) $\frac{\pi^{2}}{16 \sqrt{2}}$
(B) $\frac{\pi^{2}}{16}$
(C) $\frac{\pi^{2}}{8 \sqrt{2}}$
(D) $\frac{\pi^{2}}{8}$

Ans. (C)


Magnetic field at centre of circle
$B_{A}=\frac{\mu_{0} I}{2 R}=\frac{\mu_{0} I \pi}{\ell}[$ Also $\ell=2 \pi R]$


Magnetic field at centre $\frac{4 \mu_{0} \mathrm{I}}{4 \pi \frac{\mathrm{a}}{2}}\left(2 \sin 45^{\circ}\right)$
$=\frac{16 \mu_{0} \mathrm{I}}{\sqrt{2} \pi \ell}$ [Also $4 \mathrm{a}=\ell$ ]
Now $\frac{B_{A}}{B_{B}}=\frac{\pi^{2}}{8 \sqrt{2}}$
65. A galvanometer having a coil resistance of $100 \Omega$ gives a full scale deflection, when a current of 1 mA is passed through it. The value of the resistance, which can convert this galvanometer into ammeter giving a full scale deflection for a current of 10 A , is
(A) $2 \Omega$
(B) $0.1 \Omega$
(C) $3 \Omega$
(D) $0.01 \Omega$

Ans. (D)
$S=\frac{i_{g} G}{1-i_{g}}$
here $i_{g}=10^{-3} \mathrm{~A} \quad \mathrm{G}=10^{2} \Omega, \quad \mathrm{I}=10 \mathrm{~A}$
$\mathrm{S} \square 10^{-2} \Omega$
66. An observer looks at a distant tree of height 10 m with a telescope of magnifying power of 20 . To the observer the tree appears
(A) 10 times nearer
(B) 20 times taller
(C) 20 times nearer
(D) 10 times taller

Ans. (C)
$\theta=\frac{10}{\mathrm{x}}$
$\theta_{1}=\frac{10}{x}(20)$
Now 20 times nearer
67. The temperature dependence of resistances of Cu and undoped Si in the temperature range $300-400 \mathrm{~K}$, is best described by :
(A) Linear increase for Cu , exponential increase for Si
(B) Linear increase for Cu , exponential decrease for Si
(C) Linear decrease for Cu , linear decrease for Si
(D) Linear increase for Cu , linear increase for Si

Ans. (B)
For conductor (Cu) resistance increases linearly and for semiconductor resistance decreases
Exponentially in given temperature range.
68. Choose the correct statement :
(A) In amplitude modulation the frequency of high frequency carrier wave is made to vary in proportion to the amplitude of the audio signal
(B) In frequency modulation the amplitude of the high frequency carrier wave is made to vary in proportion to the amplitude of the audio signal.
(C) In frequency modulation the amplitude of the high frequency carrier wave is made to vary in proportion to the frequency of the audio signal
(D) In amplitude modulation the amplitude of the high frequency carrier wave is made to vary in proportion to the amplitude of the audio signal
Ans. (D)
In amplitude modulation amplitude of carrier wave (high frequency) is varied in proportion to the amplitude of signal. In frequency modulation frequency of carrier wave (high frequency) is varied in proportion to amplitude of signal.
69. Half-lives of two radioactive elements $A$ and $B$ are 20 minutes and 40 minutes, respectively, Initially, the samples have equal number of nuclei. After 80 minutes, the ratio of decayed numbers of $A$ and $B$ nuclei will be
(A) $4: 1$
(B) $1: 4$
(C) $5: 4$
(D) $1: 16$

Ans. (C)
A
$\mathrm{T}_{\mathrm{A}}=20 \mathrm{~min}$

B
$\mathrm{T}_{\mathrm{B}}=40 \mathrm{~min}$
$\frac{\left(1-\frac{N}{N_{0}}\right)_{A}}{\left(1-\frac{N}{N_{0}}\right)_{B}}=\frac{1-\frac{1}{2^{1 / t / 1 / 2}}}{1-\frac{1}{2^{1 / t / 1 / 2}}}=\frac{1-\frac{1}{2^{\frac{80}{80}}}}{1-\frac{1}{2^{\frac{80}{80}}}}=\frac{1-\frac{1}{16}}{1-\frac{1}{4}}=\frac{\frac{15}{\frac{16}{3}}}{\frac{3}{4}}=\frac{5}{4}$
70. ' $n$ ' moles of an ideal gas undergoes a process $A \rightarrow B$ as shown in the figure. The maximum temperature of the gas during the process will be
(A) $\frac{3 P_{0} V_{0}}{2 n R}$
(B) $\frac{9 P_{0} V_{0}}{2 n R}$
(C) $\frac{9 P_{0} V_{0}}{n R}$
(D) $\frac{9 P_{0} V_{0}}{4 n R}$


Ans. (D)
$P-P_{0}=-\frac{P_{0}}{V_{0}}\left(V-2 V_{0}\right)$
$\mathrm{P}=3 \mathrm{P}_{0}-\frac{\mathrm{P}_{0}}{\mathrm{~V}_{0}} \mathrm{~V}$
$\frac{n R T}{V}=3 P_{0}-\frac{P_{0}}{V_{0}} V$
nRT $=3 \mathrm{P}_{0} \mathrm{~V}-\frac{\mathrm{P}_{0}}{\mathrm{~V}_{0}} \mathrm{~V}^{2}$
differentiate w.r.t. Volume
$3 P_{0}-\frac{2 P_{0}}{V_{0}} V=0$
$V=\frac{3 V_{0}}{2}$
Put in (1)
$\mathrm{P}=3 \mathrm{P}_{0}-\frac{\mathrm{P}_{0}}{\mathrm{~V}_{0}}\left(\frac{3 \mathrm{~V}_{0}}{2}\right)=\frac{3 \mathrm{P}_{0}}{2}$
Now, PV = xRT
$\frac{9 P_{0} V_{0}}{4}=n R T$
$\mathrm{T}=\frac{9}{4} \frac{\mathrm{P}_{0} \mathrm{~V}_{0}}{\mathrm{xR}}$
71. An arc lamp requires a direct current of 10 A at 80 V to function. if it is connected to a $220 \mathrm{~V}(\mathrm{rms})$, 50 Hz AC supply, the series inductor needed for it to work is close to
(A) 0.08 H
(B) 0.044 H
(C) 0.065 H
(D) 80 H

Ans. (C)
$R=\frac{80}{10}=8 \Omega$


$V_{L}^{2}+80^{2}=220^{2}$
$\mathrm{V}_{\mathrm{L}}^{2}=(220+80)(220-80)$
$=300 \times 140 \Rightarrow V_{L}=204.9$
$\mathrm{I}_{\mathrm{ms}} \mathrm{X}_{\mathrm{L}}=204.9$
$\frac{220}{\sqrt{64+x_{L}^{2}}} x_{L}=2.5$
72. A pipe open at both ends has fundamental frequency $f$ in air. The pipe is dipped vertically in water so that half of it is in water. The fundamental frequency of the air column is now
(A) $\frac{3 f}{4}$
(B) $2 f$
(C) $f$
(D) $\frac{f}{2}$

Ans. (C)
Open organ pipe
$\mathrm{f}=\frac{\mathrm{V}}{2 \ell}$
For closed organ pipe
$\mathrm{f}^{\prime}=\frac{\mathrm{V}}{4\left(\frac{\ell}{2}\right)}=\frac{\mathrm{V}}{2 \ell}=\mathrm{f}$
73. The box of a pin hole camera, of length $L$, has hole of radius $a$. it is assumed that when the hole is illuminated by a parallel beam of light of wavelength $\lambda$ the spread of the spot (obtained on the opposite wall of the camera) is the sum of its geometrical spread and the spread due to diffraction. The spot would then have its minimum size (say $\mathrm{b}_{\text {min }}$ ) when
(A) $\mathrm{a}=\sqrt{\lambda \mathrm{L}}$ and $\mathrm{b}_{\text {min }}=\left(\frac{2 \lambda^{2}}{\mathrm{~L}}\right)$
(B) $\mathrm{a}=\sqrt{\lambda \mathrm{L}}$ and $\mathrm{b}_{\min }=\sqrt{4 \lambda \mathrm{~L}}$
(C) $\mathrm{a}=\frac{\lambda^{2}}{\mathrm{~L}}$ and $\mathrm{b}_{\text {min }}=\sqrt{4 \lambda \mathrm{~L}}$
(D) $\mathrm{a}=\frac{\lambda^{2}}{\mathrm{~L}}$ and $\mathrm{b}_{\text {min }}=\left(\frac{2 \lambda^{2}}{\mathrm{~L}}\right)$

Ans. (B)
$\mathrm{b} \rightarrow$ radius of spot.
$b=a+\frac{\lambda L}{a}$
geometrical spread + spread due to diffraction
$\frac{\mathrm{db}}{\mathrm{da}}=0$
$\Rightarrow 1-\frac{\lambda}{\mathrm{a}^{2}} \mathrm{~L}=0$
$\Rightarrow \mathrm{a}^{2}=\mathrm{L} \lambda$
$\Rightarrow \mathrm{a}=\sqrt{\mathrm{L} \lambda}$
$\mathrm{b}_{\text {min. }}=\sqrt{\mathrm{L} \lambda}+\frac{\lambda \mathrm{L}}{\sqrt{L \lambda}}$
$\mathrm{b}_{\text {min. }}=2 \sqrt{L \lambda}$
$\mathrm{b}_{\text {min. }}=\sqrt{4 \mathrm{~L} \lambda}$
74. A combination of capacitors is set up as shown in the figure. The magnitude of the electric field, due to a point charge $Q$ (having a charge equal to the sum of the charges on the $4 \mu \mathrm{~F}$ and $9 \mu \mathrm{~F}$ capacitors), at a point distance 30 m from it, would equal :
(A) $360 \mathrm{~N} / \mathrm{C}$
(B) $420 \mathrm{~N} / \mathrm{C}$
(C) $480 \mathrm{~N} / \mathrm{C}$
(D) 240 N/C


Ans. (B)

$Q_{1}=24 \mu \mathrm{c}$
$Q_{2}=18 \mu \mathrm{c}$
$Q=42 \mu \mathrm{c}$
$E=10^{7} \times 42 \times 10^{-6}$
$\mathrm{E}=420 \mathrm{~N} / \mathrm{C}$
75. Arrange the following electromagnetic radiations per quantum in the order of increasing energy :

A : Blue light
B: Yellow light
C : X-ray
D: Radiowave
(A) A, B, D, C
(B) C, A, B, D
(C) B, A, D, C
(D) D, B, A, C

Ans. (D)

$\lambda$ increasing
Hence energy of radio wave will be minimum and maximum for $X$ ray.
76. Hysteresis loops for two magnetic materials $A$ and $B$ are given below :



These materials are used to make magnets for electric generators, transformer core and electromagnet core. Then it is proper to use :
(A) A for electromgnets and B for electric generators.
(B) A for transformers and $B$ for electric generators.
(C) B for electromgnets and transformers.
(D) A for electric generators and transformers.

Ans. (C)
Since area of hysterics curve of $(\mathrm{B})$ is smaller it is suitable for electromagnet and transformer.
77. A pendulum clock lose 12 s a day if the temperature is $40^{\circ} \mathrm{C}$ and gains 4 s a day if the temperature is $20^{\circ} \mathrm{C}$. The temperature at which the clock will show correct time, and the co-efficient of linear expansion ( $\alpha$ ) of the metal of the pendulum shaft are respectively :
(A) $60^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
(B) $30^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-3} /{ }^{\circ} \mathrm{C}$
(C) $55^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-2} /{ }^{\circ} \mathrm{C}$
(D) $25^{\circ} \mathrm{C} ; \alpha=1.85 \times 10^{-5} /{ }^{\circ} \mathrm{C}$

Ans. (D)
$\frac{12}{24 \times 3600}=\frac{1}{2} \alpha(40-T)$
$\frac{-4}{24 \times 3600}=\frac{1}{2} \alpha(20-T)$
from equation (i) and (ii)
$-3=\frac{40-T}{20-T}$
$-60+3 T=40-T$
$4 \mathrm{~T}=100$
$\mathrm{T}=25$
from equation (ii)
$\frac{-4}{24 \times 3600}=\frac{1}{2} \alpha(20-25)$
$\frac{4}{24 \times 3600}=\frac{1}{2} \times \alpha \times 5$
$\alpha=\frac{8}{24 \times 3600 \times 5}=1.85 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
78. The region between two concentric spheres of radii 'a' and ' $b$ ', respectively (see figure), has volume charge density $\rho=\frac{A}{r}$, where $A$ is a constant and $r$ is the distance from the centre. At the centre of the spheres is a point charge $Q$. The value of $A$ such that the electric field in the region between the spheres will be
 constant, is :
(A) $\frac{Q}{2 \pi\left(b^{2}-a^{2}\right)}$
(B) $\frac{2 Q}{\pi\left(a^{2}-b^{2}\right)}$
(C) $\frac{2 Q}{\pi a^{2}}$
(D) $\frac{\mathrm{Q}}{2 \pi \mathrm{a}^{2}}$

Ans. (D)
(E) $\left(4 \pi r^{2}\right)=\frac{Q+\int_{a}^{r} \frac{A}{r} 4 \pi r^{2} d t}{\varepsilon_{0}}$
$\Rightarrow(E) 4 \pi r^{2}=\frac{Q+\frac{4 \pi A}{2}\left(r^{2}-a^{2}\right)}{\varepsilon_{0}}$
$\Rightarrow E=\frac{Q}{4 \pi \varepsilon_{0} r^{2}}+\frac{A}{\varepsilon_{0} 2 r^{2}}\left(r^{2}-a^{2}\right)$
$=\frac{\mathrm{Q}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}}+\frac{\mathrm{A}}{2 \varepsilon_{0}}-\frac{\mathrm{Aa}^{2}}{2 \varepsilon_{0} \mathrm{r}^{2}}$
$\frac{\mathrm{Q}}{4 \pi \varepsilon_{0}}=\frac{\mathrm{Aa}^{2}}{2 \varepsilon_{0}}$
$\mathrm{A}=\frac{\mathrm{Q}}{2 \pi \mathrm{a}^{2}}$
79. In an experiment for determination of refractive index of glass of a prism by i- $\delta$, plot, it was found that a ray incident at angle $35^{\circ}$, suffers a deviation of $40^{\circ}$ and that it emerges at angle $79^{\circ}$. In that case which of the following is closest to the maximum possible value of the refractive index ?
(A) 1.6
(B) 1.7
(C) 1.8
(D) 1.5

Ans. (D)
When $\mathrm{i}=35^{\circ}$ and $\mathrm{e}=79^{\circ}$ then $\delta=40^{\circ}$
$\delta=\mathrm{i}+\mathrm{e}-\mathrm{A}$
$40^{\circ}=35+79-A$
$\mathrm{A}=74^{\circ}$
Since $\mathrm{i} \neq \mathrm{e}$ so $\delta_{\text {min }}$ will less than $40^{\circ}$
$\mathrm{n}=\frac{\sin \left(\frac{\delta_{\text {min }}+\mathrm{A}}{2}\right)}{\sin \left(\frac{\mathrm{A}}{2}\right)}$
$\mathrm{n}=\frac{\sin \left(\frac{40^{\circ}+74}{2}\right)}{\sin \left(\frac{74}{2}\right)}=\frac{\sin \left(57^{\circ}\right)}{\sin \left(37^{\circ}\right)}=\frac{0.84}{0.60}=1.4$
Since $\delta_{\text {min }}$ will be less than $40^{\circ}$ so
n will be less than 1.4
so the closest answer will be 1.5
80. A student measures the time period of 100 oscillations of a simple pendulum four times. That data set is $90 \mathrm{~s}, 91 \mathrm{~s}, 95 \mathrm{~s}$ and 92 s . If the minimum division in the measuring clock is 1 s , then the reported mean time should be :
(A) $92 \pm 5.0 \mathrm{~s}$
(B) $92 \pm 1.8 \mathrm{~s}$
(C) $92 \pm 3 \mathrm{~s}$
(D) $92 \pm \mathrm{s}$

Ans. (D)
$\mathrm{t}_{\text {mean }}=\frac{90+91+95+92}{4}=92 \mathrm{sec}$.
absolute error in each reading $=2,1,3,0$
mean error $=\frac{2+1+3+0}{2}=1.5 \mathrm{sec}$.
put the least count of the measuring clock is 1 sec .
so it cannot measure upto 0.5 second so we have to round it off.
so mean error will be 2 second
so $\mathrm{t}=92 \pm 2 \mathrm{sec}$.
81. Identify the semiconductor devices whose characteristics are given below, in the order (a),(b),(c),(d)

(a)

(b)

(c)

(c)
(A) zener diode, simple diode, Light dependent resistance, Solar cell
(B) solar cell, Light dependent resistance, Zener diode, simple diode
(C) zener diode, Solar cell, Simple diode, Light dependent resistance
(D) Simple diode, Zener diode, Solar cell, Light dependent resistance

Ans. (D)
82. Radiation of wavelength $\lambda$, is incident on a photocell. The fastest emitted electron has speed $v$. If the wavelength is changed to $\frac{3 \lambda}{4}$, the speed of the fastest emitted electron will be
(A) $<v\left(\frac{4}{3}\right)^{1 / 2}$
$(B)=v\left(\frac{4}{3}\right)^{1 / 2}$
(C) $=v\left(\frac{3}{4}\right)^{1 / 2}$
(D) $>v\left(\frac{4}{3}\right)^{1 / 2}$

Ans. (D)

$$
\begin{align*}
& \frac{h c}{\lambda}=w+\frac{1}{2} m v^{2}  \tag{i}\\
& \frac{h c}{\lambda^{\prime}}=w+\frac{1}{2} m\left(v^{\prime}\right)^{2} \\
& \frac{h c}{\left(\frac{3 \lambda}{4}\right)}=w+\frac{1}{2} m\left(v^{\prime}\right)^{2} \tag{ii}
\end{align*}
$$

equation $\left[\right.$ (i) $\left.\times \frac{4}{3}\right]-$ (ii)
$\frac{4 \mathrm{hc}}{3 \lambda}-\frac{4}{3} \frac{\mathrm{hc}}{\lambda}=\frac{4}{3} \mathrm{w}+\frac{4}{3}\left(\frac{1}{2} m v^{2}\right)-\mathrm{w}-\frac{1}{2 \mathrm{~m}}\left(\mathrm{v}^{\prime}\right)^{2}$
$\Rightarrow \frac{4}{3} w+\frac{4}{3}\left(\frac{1}{2} m v^{2}\right)=w+\frac{1}{2} m\left(v^{\prime}\right)^{2}$
$\Rightarrow \frac{1}{2} m\left(v^{\prime}\right)^{2}=\frac{w}{3}+\frac{4}{3} \frac{1}{2} m v^{2}$
$\Rightarrow \frac{1}{2} m\left(v^{\prime}\right)^{2}>\frac{4}{3}\left(\frac{1}{2} m v^{2}\right)$
$\Rightarrow \mathrm{v}^{\prime}>\sqrt{\frac{4}{3}} \mathrm{v}$
83. A particle performs simple harmonic motion with amplitude A. Its speed is trebled at the instant that it is at distance $\frac{2 \mathrm{~A}}{3}$ from equilibrium position. The new amplitude of the motion is.
(A) 3 A
(B) $\mathrm{A} \sqrt{3}$
(C) $\frac{7 \mathrm{~A}}{3}$
(D) $\frac{\mathrm{A}}{3} \sqrt{41}$

Ans. (C)
$v=\omega \sqrt{A^{2}\left(\frac{2 A}{3}\right)^{2}}$
$v=\sqrt{5} \frac{A \omega}{3}$
$v_{\text {new }}=3 v=\sqrt{5} A \omega$
So the new amplitude is given by
$v_{\text {new }}=\omega \sqrt{A_{\text {new }}^{2}-x^{2}} \Rightarrow \sqrt{5} A \omega=\omega \sqrt{A_{\text {new }}^{2}-\left(\frac{2 A}{3}\right)^{2}}$
$\mathrm{A}_{\text {new }}=\frac{7 \mathrm{~A}}{3}$
84. A particle of mass $m$ is moving along the side of square of side ' $a$ ' with a uniform speed $v$ in the $x-y$ plane as shown in the figure :
Which of the following statements is false for the angular momentum $\vec{L}$ about the origin?
(A) $\vec{L}=m v\left[\frac{R}{\sqrt{2}}-a\right] \hat{k}$ when the particle is moving from $C$ to $D$
(B) $\vec{L}=m v\left[\frac{R}{\sqrt{2}}+a\right] \hat{k}$ when the particle is moving from $B$ to $C$

(C) $\vec{L}=\frac{m v}{\sqrt{2}} R \hat{k}$ when the particle is moving from $D$ to $A$
(D) $\vec{L}=-\frac{m v}{\sqrt{2}} R \hat{k}$ when the particle is moving from $A$ to $B$

Ans. (AC)
From C to D

$$
\overrightarrow{\mathrm{L}}_{0}=\mathrm{mv}\left[\frac{\mathrm{R}}{\sqrt{2}}+\mathrm{a}\right] \hat{\mathrm{k}}
$$

from $B$ to $C$
$\overrightarrow{\mathrm{L}}_{0}=\mathrm{mv}\left[\frac{\mathrm{R}}{\sqrt{2}}+\mathrm{a}\right] \hat{\mathrm{k}}$
from $D$ to $A$
$\overrightarrow{\mathrm{L}}_{0}=\frac{\mathrm{mv}}{\sqrt{2}} R(-\hat{k})$
from $A$ to $B$
$\overrightarrow{\mathrm{L}}_{0}=\frac{\mathrm{mv}}{\sqrt{2}} R(-\hat{k})$
85. An ideal gas undergoes a quasi static, reversible process in which its molar heat capacity $C$ remains constant. If during this process the relation of pressure P and volume V is given by $\mathrm{PV}^{\mathrm{n}}=$ constant, then n is given by (Here $\mathrm{C}_{\mathrm{p}}$ and $\mathrm{C}_{V}$ are molar specific heat at constant pressure and constant volume, respectively) :
(A) $n=\frac{C-C_{p}}{C-C_{v}}$
(B) $n=\frac{C_{p}-C}{C-C_{v}}$
(C) $n=\frac{C-C_{v}}{C-C_{p}}$
(D) $n=\frac{C_{p}}{C_{v}}$

Ans. (A)
$C=C_{v}+\frac{R}{1-n}$
$C-C_{v}=\frac{C_{p}-C_{v}}{1-n} ; 1-n=\frac{C_{p}-C_{v}}{C-C_{v}}$
$n=1-\frac{C_{p}-C_{v}}{C-C_{v}}=\frac{C-C_{p}}{C-C_{v}}$
86. A screw gauge with a pitch of 0.5 mm and a circular scale with 50 divisions is used to measure the thickness of a thin sheet of Aluminium. Before starting the measurement, it is found that when the two jaws of the screw gauge are brought in contact, the $45^{\text {th }}$ division coincides with the main scale line and that the zero of the main scale is barely visible. What is the thickness of the sheet if the main scale reading is 0.5 mm and the $25^{\text {th }}$ division coincides with the main scale line ?
(A) 0.80 mm
(B) 0.70 mm
(C) 0.50 mm
(D) 0.75 mm

Ans. (A)
When jaws are closed, the zero error will be
= main scale reading + (circularscale reading) (Least count)
$=-0.5 \mathrm{~mm}+(45)(0.01)$
zero error $=-0.05 \mathrm{~mm}$
when the sheet is placed between the jaws; measured thickness
$=0.5 \mathrm{~mm}+(25)(0.01)=0.75 \mathrm{~mm}$
$\Rightarrow$ Actual thickness
$=0.75 \mathrm{~mm}-(-0.05)$
$=0.80 \mathrm{~mm}$
87. A roller is made by joining together two cones at their vertices O . It is kept on two rails $A B$ and $C D$ which are placed asymmetrically (see figure), with its axis perpendicular to $C D$ and its centre $O$ at the centre of line joining $A B$ and $C D$ (see figure). It is given a light push so that it starts rolling with its centre O moving parallel to CD in the direction shown. As it moves, the roller will tend to :

(A) turn right
(B) go straight
(C) turn left and right alternately
(D) turn left

Ans. (D)


At distance $\mathrm{x}_{0}$ from $\mathrm{O} \mathrm{v}=\omega \mathrm{R}$
distance less than $X_{0} v>\omega R$
Initially, there is pure rolling at both the contacts. As the cone moves forward slipping at $A B$ will start in forward direction as radius at left contact decreases.

Thus the cone will start turning towards left. As it moves further slipping at CD will start in backward direction which will also turn the cone towards left.
88. If $a, b, c, d$ are inputs to a gate and $x$ is its output, then, as per the following time graph, the gate is :
(A) AND
(B) OR
(C) NAND
(D) NOT


Ans. (B)
whenever we have 1 at input, output is 1 .
so the gate is or
89. For a common emitter configuration, if $\alpha$ and $\beta$ have their usual meanings, the incorrect relationship between $\alpha$ and $\beta$ is.
(A) $\alpha=\frac{\beta}{1-\beta}$
(B) $\alpha=\frac{\beta}{1+\beta}$
(C) $\alpha=\frac{\beta^{2}}{1+\beta^{2}}$
(D) $\frac{1}{\alpha}=\frac{1}{\beta}+1$

Ans. (AC)
$\frac{1}{\alpha}=\frac{1}{\beta}+1$
$\alpha=\frac{\beta}{\beta+1}$
90. A satellite is revolving in a circular orbit at a height ' $h$ ' from the earth's surface (radius or earth $R ; h \ll R$ ). The minimum increase in its orbital velocity required ,so that the satellite could escape from the earth's gravitational field, is close to : (Neglect the effect of atmosphere.)
(A) $\sqrt{g R}$
(B) $\sqrt{g R / 2}$
(C) $\sqrt{\mathrm{gR}}(\sqrt{2}-1)$
(D) $\sqrt{2 g R}$

Ans. (C)

$\frac{\mathrm{GmM}}{(\mathrm{R}+\mathrm{h})^{2}}=\frac{\mathrm{GMm}}{\mathrm{R}}$
$v=\sqrt{\frac{G M}{R}}$

$$
\begin{aligned}
& \frac{1}{2} m v_{1}^{2}-\frac{G M m}{R}=0 \\
& v_{1}=\sqrt{\frac{2 G M}{R}} \\
& \Delta v=\sqrt{\frac{G M}{R}}(\sqrt{2}-1) \\
& =\sqrt{g R}(\sqrt{2}-1)
\end{aligned}
$$

