KCS Educate

JEE MAIN - MODEL PAPER

Time Allotted : 3 hours
M.M.: 360

Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.

INSTRUCTIONS

A. General:

1. This Question Paper contains $\mathbf{3 0}$ questions in each section i.e., Maths, Physics \& Chemistry.
2. Each page of this question paper has space for rough work. No additional sheets will be provided for rough work.
3. Blank papers, clip boards, log tables, slide rule, calculators, cellular phones, pagers and electronic gadgets, in any form, are NOT allowed.
4. The answer sheet, a machine-readable OMR, is provided separately.
5. DO NOT TAMPER WITH/ MUTILATE THE OMR OR THE BOOKLET.
6. Write your Name in the space provided at the bottom of this sheet.
B. Marking Scheme:
7. For each question you will be awarded 4 marks, if you have darkened only the bubble corresponding to the correct answer and zero mark, if none of the bubbles are darkened th altothercases, minus one (-1) mark will be awarded.
8. There is only one correct response for each question, filling up more than one response in each question will be treated as wrong response and marks for wrong response will be deducted accordingly as per instruction above.

C. Filling the OMR:

9. On the OMR, fill the details and darken the boxes with BLACK BALLPOINT PEN only.
10. The answer(s) of the questions must be marked by shading the circles against the question by ballpoint pen only in appropriate manner as shown below. All other method will be treated as wrong.

Right Method

Wrong Methods

Name of the Candidate: \square

I have read all the instructions and shall abide by them.

SECTION I : MATHEMATICS

1. $f(x)=\lim _{n \rightarrow \infty} x\left[\frac{1}{1.3}+\frac{2}{1.3 .5}+\ldots+\frac{n}{1.3 .5 \ldots(2 n+1)}\right]$, then $\int_{0}^{4}[f(x)] d(x-[x])$ (where [.] represent greatest integer function) is equal to
(A) 1
(B) 2
(C) 3
(D) none of these
2. $f(n)=\sum_{r=1}^{n}\left[r^{2}\left({ }^{n} C_{r}-{ }^{n} C_{r-1}\right)+(2 r+1)^{n} C_{r}\right]$, then $f(30)$ is
(A) 900
(B) 930
(C) 960
(D) none of these
3. Locus of the centre of the circle touching the angle bisectors of the pair of lines $\alpha x^{2}+\alpha y^{2}+\beta x y=0$
(where $\alpha, \beta, \in \mathrm{R}$) is
(A) $x y=0$
(B) $x^{2}-y^{2}=0$
(C) $x^{2}-y^{2}=1$
(D) none of these
4. Statement-1: For any real number $\theta, \sin ^{6} \theta+\cos ^{6} \theta \leq 1$.

Statement-2: If x and y are non-zero real numbers such that $x^{2}+y^{2}=1$, then $x^{4} \leq 1 / 2$ and $y^{4} \leq 1 / 2$.
(A) Statement- 1 is True, Statement- 2 is True;

Statement-2 is a correct explanation for Statement-1
(B) Statement-1 is True, Statement-2 is True;

Statement-2 is NOT a correct explanation for Statement-1
(C) Statement-1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True
5. In an acute angled triangle $A B C$, the value of $\frac{\sin A}{A}+\frac{\sin B}{B}+\frac{\sin C}{C}$ is
(A) greater than $6 / \pi$
(B) $6 / \pi$
(C) less than $6 / \pi$
(D) none of these
6. Let $f(x)=\left(x^{n}-1\right)^{1 / n}(x>0)$, then $\int\left(f^{6}(x)\right)^{n} d x$, where $f^{n}(x)$ denotes fofof....(x), equals
(n times)
(A) $\frac{x^{n+1}}{n+1}-6 x+c$
(B) $\frac{x^{n}}{n}-64 x+c$
(C) $\frac{x^{n}}{n}-6 x+c$
(D) $\frac{x^{n+1}}{n+1}-64 x+c$
7. Statement-1: If $A(1,2)$ and $B(7,10)$ are two points.

If $P(x, y)$ is such that $\angle A P B=60^{\circ}$, then area of $\triangle A P B$ will be maximum if P lies on $L \equiv 3 x+4 y=16$
Statement-2: In statement-1 the area of triangle APB is maximum if P lies on the perpendicular bisector of $A B$.
(A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
(B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(C) Statement- 1 is True, Statement-2 is False
(D) Statement-1 is False, Statement-2 is True
8. If the perimeter of triangle is equal to its in-radius then the triangle is necessarily
(A) acute angled
(B) obtuse angled
(C) right angled
(D) no such triangle is possible
9. $\lim _{n \rightarrow \infty}\left(\frac{n!}{n^{n}}\right)^{1 / n}$ equals
(A) e
(B) $1 / \mathrm{e}^{3}$
(C) e^{3}
(D) $1 / \mathrm{e}$
10. $A B C$ is a right angle triangle (right angled at B) inscribed in parabola $y^{2}=4 x$. The minimum length of the intercept cut off by the tangent at A and C to the parabola on y-axis is
(A) 8
(B) 4
(C) 2
(D) none of these
11. If $\bar{a}, \bar{b}, \bar{c}$ are unit vector equally inclined to each other at EdUacangle $@ \neq 0$, then the angle between $\bar{a} \times \bar{b}$ and the plane containing $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is
Success Educate Pvt. 4
(A) $\sin ^{-1}\left(\tan \frac{\alpha}{2}|\cot \alpha|\right)$
(B) $\cos ^{-1}\left(\tan \frac{\alpha}{2}|\cot \alpha|\right)$
(C) $\cos ^{-1}\left(\cot \frac{\alpha}{2}|\tan \alpha|\right)$
(D) $\sin ^{-1}\left(\cot \frac{\alpha}{2}|\tan \alpha|\right)$
12. If $\tan \left(7 x^{\circ}\right)=\frac{\sin x^{\circ} \cos y^{\circ}+\cos x^{\circ} \sin y^{\circ}}{\cos x^{\circ} \cos y^{\circ}-\sin x^{\circ} \sin y^{\circ}}$ where
$x^{\circ}+y^{\circ}=134^{\circ}$, then the least positive integral value of x is
(A) 122
(B) greater than 172
(C) less than 100
(D) 69
13. If A is a square matrix of order 3 such that $|A|=2$, then $\left|\left(\operatorname{adj} A^{-1}\right)^{-1}\right|$ is
(A) 2
(B) 4
(C) 8
(D) 16
14. If $\sum_{n=1}^{49} \frac{1}{\sqrt{n+\sqrt{n^{2}-1}}}=a+b \sqrt{2}$, then $a+b=$
(A) 2
(B) 4
(C) 8
(D) none of these
15. If α_{1} and α_{2} satisfy $\sin ^{-1} \frac{2 x}{1+x^{2}}=\tan ^{-1} \frac{2 x}{1-x^{2}}$ where $\left|\alpha_{1}-\alpha_{2}\right|<k$, for all α_{1} and α_{2} then k is equal to
(A) 1
(B) $3 / 2$
(C) 2
(D) none of these
16. Minimum value of $\left(\left(x_{1}-x_{2}\right)^{2}+\left(\sqrt{2-x_{1}^{2}}-\frac{9}{x_{2}}\right)^{2}\right)$,
where $x_{1} \in(0, \sqrt{2})$ and $x_{2} \in R^{+}$, will be
(A) 4
(B) 6
(C) 8
(D) 10
17. If $y^{2}=x^{2}-x+1$ and $I_{n}=\int \frac{x^{n}}{y} d x$ and
$\mathrm{Al}_{3}+\mathrm{Bl}_{2}+\mathrm{Cl}_{1}=\mathrm{x}^{2} \mathrm{y}$, then ordered triplet $(\mathrm{A}, \mathrm{B}, \mathrm{C})$ is
(A) $\left(\frac{1}{2},-\frac{1}{2}, 1\right)$
(B) $(3,1,0)$
(C) $(1,-1,2)$
(D) $\left(3, \frac{-5}{2}, 2\right)$
18. Set of values of λ for which the graph of the function $f(x)=\frac{1}{4} x^{4}-\frac{2 \lambda}{3} x^{3}-2(\lambda-6) x^{2}+2$ is concave upwards, is
(A) $(-2,2)$
(B) $(-3,2)$
(C) $(-2,3)$
(D) $(-6,3)$
19. If the roots of the equation $x^{4}-12 x^{3}+b x^{3}+c x+81=0$ are positive then values of b and c respectívely are centre fo
(A) 54, 108
(B) $-54,108$
(C) $54,-108$
(D) none of these
20. If α is an integer satisfying $|\alpha| \leq 5-|[x]|$, where x is a real number for which $2 x \tan ^{-1} x \geq \ln \left(1+x^{2}\right)$ then number of maximum possible values of α will be
(A) 7
(B) 11
(C) 15
(D) none of these
21. With usual notations in triangle $A B C$, if $A=\frac{\pi}{2}$ and $a+b+c=\Delta$, then $b+c-a$ is equal to
(A) 1
(B) 2
(C) 3
(D) 4
22. If $A=\{z:|z-2-2 i|=|z-6-6 i|\}$, $B=\{z: \arg (z-4-4 i)=\pi / 4\}$,

$$
\operatorname{Re}(z)=a, \operatorname{Im}(z)=b, a \in N, b \in N, a \leq 6, b \leq 6 \text { then }
$$

(A) $n(A \cup B)=7$
(B) $n(A \cap B)=1$
(C) $A \subseteq B$
(D) $B \subseteq A$
23. If $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ are three non-coplanar unimodular vector, each inclined with other at an angle $\pi / 6$, then volume of tetrahedron whose edges are \bar{a}, \bar{b} and \bar{c}, is
(A) $\frac{\sqrt{3 \sqrt{3}-5}}{12}$
(B) $\frac{3 \sqrt{3}+5}{12}$
(C) $\frac{3+5 \sqrt{2}}{12}$
(D) none of these
24. Number of solutions of equation
$(\sin \theta+\cos \theta) \tan \theta=\sqrt{\sec ^{2} \theta-1}$ in $[0,2 \pi]$, are
(A) 1
(B) 2
(C) 3
(D) 4
25. If $S=\sum_{r=1}^{7} \tan ^{2} \frac{r \pi}{16}$, then S is equal to
(A) 44
(B) 40
(C) 34
(D) 35
26. If the curve $y=1+\sqrt{4-x^{2}}$ and the line $y=(x-2) k+4$ has two distinct points of intersection then the range of k is
(A) $[1,3]$
(B) $\left[\frac{5}{12}, \infty\right)$
(C) $\left(\frac{5}{12}, \frac{3}{4}\right]$
(D) $\left[\frac{5}{12}, \frac{3}{4}\right)$
27. Set of equations $x^{2}-b_{n} x+\underbrace{111 \ldots 1}_{n \text {-times }}=n, n=2,3,4, \ldots, 9$ and $b_{n} \in N$, have integer roots. Which of the following is
(A) Common root of these equations is 9 .
(B) No three of these equations have a common root.
(C) $A^{\text {Prot }}$ rot of an equation with $n=4$ can be 123.
(D) A root of an equation with $\mathrm{n}=4$ is 1234 .
28. A piece of string is cut into two pieces. The point at which the string is cut was chosen at random. What is the probability that the longer piece is at least three times as long as the shorter piece?
(A) $1 / 4$
(B) $1 / 3$
(C) $2 / 5$
(D) $1 / 2$
29. If a_{r} is the coefficient of x^{r} in the expression of $\left(1+x+x^{2}\right)^{n}$, then the value of $a_{1}+4 a_{4}+7 a_{7}+10 a_{10}+\ldots .$. is equal to
(A) 3^{n-1}
(B) $n 3^{n-1}$
(C) 2^{n}
(D) $2^{n} / 3$
30. Equation of a variable circle is
$x^{2}+y^{2}-2\left(t^{2}-3 t+1\right) x-2\left(t^{2}+2 t\right) y+2=0$.
Locus of centre of circle is
(A) pair of straight line
(B) parabola
(C) ellipse
(D) none of these

SECTION II : PHYSICS

31. n resistances each of resistance R are joined with capacitors of capacity C (each) and a battery of emf E as shown in the figure. In steady state condition ratio of charge stored in the first and last capacitor is

(A) $\mathrm{n}: 1$
(B) $(\mathrm{n}-1): \mathrm{R}$
(C) $\left(n^{2}+1\right):\left(n^{2}-1\right)$
(D) $1: 1$
32. A resistance $R=12 \Omega$ is connected across a source of emf as shown in the figure. Its emf changes with time as shown in the graph. What is the heat developed in the resistance in the first four seconds?

(A) 72 J
(B) 64 J
(C) 108 J
(D) 100 J
33. Pressure vs density graph of an ideal gas is as shown in the figure.
Then the correct temperature versus density graph is

(A)

(B)

nowledge Centre fo
(C)

(D)

34. An electric field given by $\vec{E}=4 \hat{i}-3\left(y^{2}+2\right) \hat{j}$ pierces Gaussian cube of side 1 m placed at origin such that its three sides represents x, y and z axes. The net charge enclosed within the cube is
(A) $4 \varepsilon_{0}$
(B) $3 \varepsilon_{0}$
(C) $5 \varepsilon_{0}$
(D) zero
35. An electric bulb of $100 \mathrm{~W}-300 \mathrm{~V}$ is connected with an A.C. supply of 500 V and $150 / \pi \mathrm{Hz}$. The required inductance to save the electric bulb is
(A) 2 H
(B) $1 / 2 \mathrm{H}$
(C) 4 H
(D) $1 / 4 \mathrm{H}$
36. Current through e.m.f. sources at $t=\infty$ will be
(A) E / R
(B) $\mathrm{E} / 3 \mathrm{R}$
(C) $\mathrm{E} / 2 \mathrm{R}$
(D) None of these

37. In an L-C circuit shown in the figure, $C=1 F, L=4 H$. At time $t=0$, charge in the capacitor is 4 C and it is decreasing at a rate of $\sqrt{5} \mathrm{C} / \mathrm{s}$.

Choose the correct statements.
(A) maximum charge in the capacitor can be 6C
(B) maximum charge in the capacitor can be 8C
(C) charge in the capacitor will be maximum after time $2 \sin ^{-1}(2 / 3) \mathrm{sec}$
(D) none of these
38. Three infinitely long thin conductors are joined at the origin of coordinates and lies along the x, y and z axes. A current i flowing along the conductor lying along the negative x-axis divides equally into the other two at the
Edu origin. The
(A) $\frac{\mu_{0} i}{4 \pi a^{L}+d .}$
(B) $\frac{3 \mu_{0} i}{4 \sqrt{2} \pi a}$
(C) $\frac{\sqrt{5} \mu_{0} i}{8 \pi a}$
(D) $\frac{\sqrt{3} \mu_{0} \mathrm{i}}{2 \pi \mathrm{a}}$
39. There are two radioactive nuclei A and $\mathrm{B} . \mathrm{A}$ is an alpha emitter and B a beta emitter. Their disintegration constants are in the ratio $1: 2$. What should be the ratio of number of atoms of A and B at any time t so that probabilities of getting alpha and beta particles are same at that instant
(A) $2: 1$
(B) $1: 2$
(C) e
(D) e^{-1}
40. The counting rate observed from a radioactive source at t second was N_{0} counts per second and at $4 t$ second $\frac{N_{0}}{16}$ counts per second. The counting rate observed, as counts per second, at (11/2)t second will be
(A) $\frac{\mathrm{N}_{0}}{128}$
(B) $\frac{\mathrm{N}_{0}}{64}$
(C) $\frac{\mathrm{N}_{0}}{32}$
(D) $\frac{N_{0}}{256}$
41. A charge particle is moving in a uniform magnetic field. At any instant magnetic force on particle is $(2 \hat{i}+4 \hat{j}+\hat{k})$
N when its velocity is $(\hat{i}+\hat{j}+\lambda \hat{k}) \mathrm{m} / \mathrm{s}$. The value of λ is
(A) 4
(B) -4
(C) 6
(D) -6
42. In Young's double-slit experiment how many maxima can be obtained on a screen (including the central maximum) on both sides of the central fringe if $\lambda=2000 \AA$ and $d=7000 \AA$?
(A) 12
(B) 7
(C) 13
(D) 6
43. A cylindrical tube, open at both ends, has a fundamental frequency f in air. The tube is dipped vertically in water so that half of it is in water. The fundamental frequency of the air column in now
(A) $f / 2$
(B) $3 f / 4$
(C) \ddagger
(D) $2 f$
44. A bird is flying over a swimming pool at a height of 2 m from the water surface. If the bottom is perfectly plane reflecting surface and depth of swimming pool is 1 m , then the final image of bird from the bird itself is ($\mu_{\mathrm{w}}=4 / 3$)
(A) $11 / 3 \mathrm{~m}$
(B) $23 / 3 \mathrm{~m}$
(C) $11 / 4 \mathrm{~m}$
(D) $11 / 2 \mathrm{~m}$
45. Electrons accelerated by a potential difference of 30 kV fall on a metallic target. The maximum value of momentum of emitted X -ray photons is
(A) $1.6 \times 10^{-22} \mathrm{~N}-\mathrm{s}$
(B) $1.6 \times 10^{-21} \mathrm{~N}-\mathrm{s}$
(C) $1.6 \times 10^{-24} \mathrm{~N}-\mathrm{s}$
(D) $1.6 \times 10^{-23} \mathrm{~N}-\mathrm{s}$
46. If radius or earth were to shrink by one percent, its mass remaining same, the acceleration due to gravity on the earth's surface would

Knowledge Centre fo
(A) Decrease
(B) Remain unchanged
(C) Increase
(D) Be zero
47. The current density $\overrightarrow{\mathrm{J}}$ inside a long, solid cylindrical wire of radius $\mathrm{a}=12 \mathrm{~mm}$ is in the direction of the central axis, and its magnitude varies linearly with radial distance r from the axis according to $J=\frac{J_{0} r}{a}$ where $J_{0}=\frac{10^{5}}{4 \pi} \frac{\mathrm{~A}}{\mathrm{~m}^{2}}$. The magnitude of magnetic field at $\mathrm{r}=\frac{\mathrm{a}}{2}$ in $\mu \mathrm{T}$ is:
(A) $10 \mu \mathrm{~T}$
(B) $4 \mu \mathrm{~T}$
(C) $5 \mu \mathrm{~T}$
(D) $3 \mu \mathrm{~T}$
48. The shortest wavelength of X-rays emitted from an Xray tube depends on
(A) the current in tube
(B) the voltage applied to the tube
(C) the nature of the gas in tube
(D) the atomic number of the target material
49. Two particles are performing simple harmonic motion with same amplitude and same frequency. When they are at same distance from mean position on opposite sides, their speeds are one fourth of maximum speed. Also at these positions their direction of velocities are opposite, the phase difference between the two simple harmonic motions is

(A) $\pi / 2$
(B) π
(C) $3 \pi / 2$
(D) $5 \pi / 4$
50. A signal of 20 mV is applied to common emitter transistor amplifier circuit. Due to this, the change in the base current and the change in collector current are 20 $\mu \mathrm{A}$ and 2 mA . The load resistance is $10 \mathrm{k} \Omega$. The voltage gain is
(A) 20 V
(B) 10 V
(C) 50 V
(D) 5 V
51. A pendulum of length $I=1 \mathrm{~m}$ is released from $\theta_{0}=60^{\circ}$. The rate of change of speed of the bob at $\theta=30^{\circ}$ is

Edulg=aotmas

(A) $5 \sqrt{3} \mathrm{~m} / \mathrm{s}^{2}$
(B) $5 \mathrm{~m} / \mathrm{s}^{2}$
(C) $10 \mathrm{~m} / \mathrm{s}^{2}$
(D) $2.5 \mathrm{~m} / \mathrm{s}^{2}$

52. A particle is projected with $40 \mathrm{~m} / \mathrm{sec}$ making angle 60° from horizontal, radius of curvature when it will make angle 30° from horizontal
(A) $\frac{32}{3 \sqrt{3}}$
(B) $\frac{32}{\sqrt{3}}$
(C) $\frac{32 \sqrt{3}}{3}$
(D) none of these
53. A particle moves from rest at A on the surface of a smooth circular cylinder of radius r as shown. At B its leaves the cylinder. Then the equation relating α and β is
(A) $3 \sin \alpha=2 \cos \beta$
(B) $2 \sin \alpha=3 \cos \beta$
(C) $3 \sin \beta=2 \cos \alpha$

(D) $2 \sin \beta=3 \cos \alpha$
54. A particle is moving along x -axis as $\mathrm{x}=\mathrm{at}{ }^{2}+\mathrm{bt}+\mathrm{c}$; where x is in metres, t in second, $a=1, b=-3, c=2$, distance covered by particle from $t=1$ to $t=2$,
(A) 0.5 m
(B) zero
(C) 2 m
(D) none of these
55. During an adiabatic process, the density of a gas is found to be proportional to cube of temperature. The degree of freedom of gas molecule is
(A) 6
(B) 5
(C) 4
(D) 3
56. A cubical open vessel of side 5 m filled with liquid upto a height of 4 m is accelerated with an acceleration a.
The minimum value of a so that pressure at mid point of $A C$ is equal to atmospheric is
(A) g
(B) $2 g$
(C) $g / 2$
(D) $2 g / 5$

(B) $-\frac{\mathrm{GMm}}{\mathrm{r}}$
(D) none of these

SECTION III : CHEMISTRY

61. Which of the following statement is incorrect.
(A) Borax can be used as a primary standard for titration against acids .
(B) One mole of borax reacts with two moles of monobasic acid.
(C)Borax can be used as a buffer solution
(D)Borax when dissolved in water gives $\mathrm{H}_{3} \mathrm{BO}_{3}$ only.
62. Lacttice enthalpy of $\mathrm{NaCl}(\mathrm{s})$ is $788 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and enthalpy of hydration is $-784 \mathrm{~kJ} \mathrm{~mole}^{-1}$. Hence heat of solution of $\mathrm{NaCl}(\mathrm{s})$ is
(A) $4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(B) $-4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(C) $-1572 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(D) $1572 \mathrm{~kJ} \mathrm{~mol}^{-1}$
63. For the reaction $A(s) \rightleftharpoons B(s)+C(g) K_{p}=2$ at certain temperature. One mole each of $A, B \& C$ are present at equilibrium in a closed container now $C(g)$ is added at equilibrium so that its pressure increased by 2 atm. Then final no of moles at equilibrium of $A, B \& C$ respectively are.
(A) $1.5,0.5,0.5$
(B) $1.5,0.1,1$
(C) $2,0,1$
(D) $1.5,0,1$
64. If $\mathrm{E}_{\mathrm{Fe}^{+2} / \mathrm{Fe}}^{0}$ is $-0.47, \mathrm{E}_{\mathrm{Fe}^{+3} / \mathrm{Fe}}^{0}$ is -0.057 then $\mathrm{E}_{\mathrm{Fe}^{+3} / \mathrm{Fe}^{+2}}^{0}$ is
(A) 0.77
(B) -0.413
(C) 0.413
(D) -0.77
65. The stability of alkali metal halides are in the order.
(A) $\mathrm{NaF}<\mathrm{NaCl}<\mathrm{NaBr}<\mathrm{NaI}$
(B) $\mathrm{NaI}<\mathrm{NaBr}<\mathrm{NaCl}<\mathrm{NaF}$
(C) $\mathrm{NaI}<\mathrm{NaBr}<\mathrm{NaCl}>\mathrm{NaF}$
(D) None of these
66. The value of change in internal energy ($\Delta \mathrm{E}$) when the system absorbs 2000 kJ of heat and does 1200 kJ of work on the surrounding is
(A) 800 kJ
(B) -800kJ
(C) 3200 kJ
(D) -3200 kJ
67. Potential difference of the electrical double layer formed in a calloidal sol is called:
(A) emf
(B) Zeta potential
(C) Brownian potential
(D) Nerst potential
68. An element crystalises in a bcc lattice nearest neighbours and next nearest neighbours of the element are respectively.
(A) 8,8
(B) 8,6
(C) 6,8
(D) 6,6
69. The vapour pressure of a pure solvent is 100 mm at certain temperature when a non volatile, non electrolyte solute is added vapour pressure drops to 95 mm hence mole fraction of solute in the solution is
(A) $1 / 20$
(B) $1 / 10$
(C) $1 / 5$
(D) $1 / 4$
70. Equivalent conductance at infinite dilution of BaCl_{2}, $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl in aqueous solution are $\mathrm{x}_{1}, \mathrm{x}_{2}$ and x_{3} respectively. Equivalent conductance of BaSO_{4} solution is
(A) $x_{1}+x_{2}-x_{3}$
(B) $x_{1}-x_{2}-x_{3}$
(C) $x_{1}+x_{2}-2 x_{3}$
(D) $x_{1}-2 x_{2}+x_{3}$
71. Magnetic moment of $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is
(A) 1.73 BM
(B) 2.83 BM
(C) 3.87 BM
(D) 4.9 BM
72. Number of possible stereoisomer for complex of type $\mathrm{Ma}_{2} \mathrm{~b}_{2} \mathrm{C}_{2}$ are (where $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are monodentate ligands and M is metal ion)
(A) 4
(B) 5
(C) 6
(D) 7
73. Fehling solution consists of two seperate alkaline solution one solution contains CuSO_{4}. The other solution contains.
(A) NaHCO_{3}
(B) KHCO_{3}
(C) $\mathrm{K}_{2} \mathrm{CO}_{3}$
(D) $\mathrm{KNaC}_{4} \mathrm{H}_{4} \mathrm{O}_{6}$
74. Which of the following is dehydrobrominated most easily? Cate
(A) for Success Edyreprys.
(B)

(C)

(D)

75. Which one of the following oxide is amphoteric in nature
(A) CO
(B) CO_{2}
(C) PbO
(D) $\mathrm{Bi}_{2} \mathrm{O}_{3}$
76. Which of the following is a reducing sugar
(A) α-D-Glucose
(B) Sucrose
(C) Cellulose
(D) All of these
77. Which one of the following contains most acidic H -atom?
(A)

(B)

(C)

(D)

78. An alcohol $\mathrm{X}\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right)$ on oxidation with acidic sodium dichromate gives a carboxylic acid $\mathrm{Y}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right)$. Treatment of X with hot concentrate $\mathrm{H}_{2} \mathrm{SO}_{4}$ brings about dehydration and gives compound $\mathrm{Z}\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)$. Treatment of Z with warm aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives $W\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right)$ a new alcohol isomeric with X which is resistant towards oxidation. Identify X .
(A) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$
(B)

(C)

(D)

79. The reagent used to get 3-phenylprop-2-eoic acid from 4-phenylbut-3-en-2-one is
(A) HIO_{4}
(B) KMnO_{4}
(C) NaOI
(D) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
80. Stability of nitrides of II A group elements is in order:
(A) $\mathrm{Ca}_{3} \mathrm{~N}_{2}<\mathrm{Mg}_{3} \mathrm{~N}_{2}<\mathrm{Be}_{3} \mathrm{~N}_{2}$
(B) $\mathrm{Be}_{3} \mathrm{~N}_{2}<\mathrm{Mg}_{3} \mathrm{~N}_{2}<\mathrm{Ca}_{3} \mathrm{~N}_{2}$
(C) $\mathrm{Ca}_{3} \mathrm{~N}_{2}<\mathrm{Be}_{3} \mathrm{~N}_{2}<\mathrm{Mg}_{3} \mathrm{~N}_{2}$
(D) $\mathrm{Mg}_{3} \mathrm{~N}_{2}<\mathrm{Be}_{3} \mathrm{~N}_{2}<\mathrm{Ca}_{3} \mathrm{~N}_{2}$
81. An electron in H -atom in its ground state absorbs 1.5 times as much energy as the minimum required for its escape from the atom. The wave number of the emitted electron is :
(A) $\frac{6.8 \mathrm{ev}}{\mathrm{hc}}$
(B) $\frac{13.6 \mathrm{ev}}{\mathrm{hc}}$
(C) $\frac{20.4 \mathrm{ev}}{\mathrm{hc}}$
(D) none of these
82. The amino acid $\underset{\substack{\mathrm{COOH}}}{\mathrm{H} N-} \mathrm{CH}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{COOH}$ at high pH exist as
(A)

(C)

(D) $\underset{\substack{\mathrm{C} \\ \mathrm{COO}^{-}}}{\mathrm{H}-\left(\mathrm{CH}_{2}\right)_{2}-\mathrm{COO}^{-}}$
83. The correct order of increasing bond enthalpy is
(A) $\mathrm{Cl}_{2}<\mathrm{F}_{2}<\mathrm{Br}_{2}<\mathrm{I}_{2}$
(B) $\mathrm{F}_{2}<\mathrm{Br}_{2}<\mathrm{Cl}_{2}<\mathrm{I}_{2}$
(C) $\mathrm{I}_{2}<\mathrm{Br}_{2}<\mathrm{F}_{2}<\mathrm{Cl}_{2}$
(D) $\mathrm{I}_{2}<\mathrm{Br}_{2}<\mathrm{Cl}_{2}<\mathrm{F}_{2}$
84. Which of the follownig has fractional bond order ?
(A) O_{2}^{2+}
(B) O_{2}^{2-}
(C) F_{2}^{2-}
(D) D_{2}^{-}
85. To a 0.3 mol of a mixture of $\mathrm{NaHCO}_{3} \& \mathrm{Na}_{2} \mathrm{CO}_{3} 0.1 \mathrm{~mol}$ of NaOH is added. The resulting solution required 0.5 mol of HCl to complete neturalisation, then the composition of initial mixture is

NaHCO_{3} (mole)

$$
\mathrm{Na}_{2} \mathrm{CO}_{3} \text { (mole) }
$$

(A) 0.1
0.2
(B) 0.2
0.1
(C) 1.5
1.5
(D) 0
0.3
86. The solubility product of $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ at $25^{\circ} \mathrm{C}$ is 2.0×10^{-18} then its solubility in aqueous solution is
(A) $\sqrt{2} \times 10^{-9}$
(B) $\frac{1}{2^{\frac{1}{3}}} \times 10^{-6}$
(C) $\frac{(200)^{1 / 2}}{2} \times 10^{-5}$
(D) none of these
87. Number of nuclei of a redioactive substance at time $t=0$ are 500 and 400 at time $t=2 \mathrm{sec}$. The number of nuclei at $t=4 \mathrm{sec}$ will be

Knowledge Cent
(A) 300
(B) 320
(C) 360
(D) none of these
88. Which one is the correct expression below for the solution containing ' n ' number of weak acids?
(A) $\left[\mathrm{H}^{+}\right]=\sqrt{\sum_{i=1}^{n} \frac{\mathrm{~K}_{\mathrm{i}}}{\mathrm{C}_{\mathrm{i}}}}$
(B) $\left[\mathrm{H}^{+}\right]=\sqrt{\sum_{i=1}^{n} \mathrm{~K}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}}$
(C) $\left[\mathrm{H}^{+}\right]=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{K}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}$
(D) none of these
89. Compute the resonance energy of gaseous benzene from the following data.
B. $E(\mathrm{C}-\mathrm{H})=416.3 \mathrm{~kJ} / \mathrm{mol}$
$B . E(C-C)=331.4 \mathrm{~kJ} / \mathrm{mol}$
$B \cdot E(C=C)=591.1 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\text {sub }}^{\circ}[\mathrm{C},($ graphite $)]=718.4 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\text {diss }}^{\circ}\left[\mathrm{H}_{2}(\mathrm{~g})\right]=435.9 \mathrm{~kJ} / \mathrm{mol}$
$\Delta \mathrm{H}_{\mathrm{f}}^{\circ}[$ benzene $(\mathrm{g})]=82.9 \mathrm{~kJ} / \mathrm{mol}$
(A) -269.7 kJ
(B) -138.7 kJ
(C) 104.7 kJ
(D) +269.7 kJ
90. At low pressure vander waal's equation for ' n ' moles of a real gas will have its simplified from.
E(A) $\frac{P V}{R T-\frac{n a}{V}}$
(B) $\frac{P V}{R T+R b}=n$

- for Success Educate Pvt. Ltd.
$\begin{array}{ll}\text { (C) } \frac{\mathrm{PV}}{\mathrm{RT}-\mathrm{nPb}}=1 & \text { (D) } \frac{\mathrm{PV}}{\mathrm{RT}-\frac{n^{2}}{\mathrm{~V}}}=n\end{array}$

ANSWERS

MATHEMATICS

1.	(B)	7.	(D)	13.	(B)	19.	(C)	25.	(D)
2.	(C)	8.	(B)	14.	(C)	20.	(B)	26.	(C)
3.	(A)	9.	(D)	15.	(C)	21.	(D)	27.	(C)
4.	(C)	10.	(B)	16.	(C)	22.	(A)	28.	(D)
5.	(A)	11.	(A)	17.	(D)	23.	(A)	29.	(B)
6.	(A)	12.	(A)	18.	(D)	24.	(C)	30.	(B)

PHYSICS

31.	(D)	37.	(A)	43.	(C)	49.	(B)	55.	(A)
32.	(B)	38.	(C)	44.	(D)	50.	(A)	56.	(B)
33.	(A)	39.	(A)	± 45.	(b) ucate	51.	(B)	57.	(A)
34.	(B)	40.	(B)	Knowledge C46: fo	suf(C) ${ }^{\text {Educate Prt. Ltd. }}$	52.	(D)	58.	(D)
35.	(C)	41.	(D)	47.	(A)	53.	(C)	59.	(B)
36.	(A)	42.	(B)	48.	(B)	54.	(A)	60.	(A)

CHEMISTRY

61.	(D)	67.	(B)	73.	(D)	79.	(C)	85.	(B)
62.	(A)	68.	(B)	74.	(D)	80.	(A)	86.	(B)
63.	(C)	69.	(A)	75.	(C)	81.	(A)	87.	(B)
64.	(A)	70.	(C)	76.	(A)	82.	(D)	88.	(B)
65.	(B)	71.	(A)	77.	(A)	83.	(C)	89.	(A)
66.	(A)	72.	(C)	78.	(C)	84.	(D)	90.	(A)

Download solution from

www-kcseducate-in

$\}^{\text {st }}$ in C.G.
 RISHABH BHATNAGAR 99.97\%ile

THOMAS JACOB $\mathbf{9 9 . 9 6 \%}$ ile

Stars of KCS

SWAPNIL GUPTA 99.90\%ile

AARON JERRY NINAN 99.87\%ile

JEE Aspirants @ 2019

Continuous leader in JEE

Successful Students With Guest of Honour Mr. Pallav Goyal (University of Chicago, USA) \& Mr. Ashwin Agrawal (Stanford University, USA)

KCS Educate

reviving internal teacher Knowledge Centre for Success Educate Pvt. Ltd. for JEE | Aptitude Test | NTSE | Olympiad136, New Civic Centre, Bhilai, Dist. Durg (C.G.) Telephone : $7408-400450$
info@kcseducate.in / www.kcseducate.in/ facebook.com/kcseducate
.........reviving internal teacher
Knowledge Centre for Success Educate Pvt. Ltd.
for JEE | Aptitude Test | NTSE | Olympiad

JEE MAIN - MODEL PAPER

(ANSWERS \& HINTS)

SECTION I : MATHEMATICS

1. (B)

$$
\begin{aligned}
& f(x)=\frac{x}{2} \lim _{n \rightarrow \infty} \sum_{r=1}^{n}\left[\frac{1}{1 \cdot 3 \cdot 5 \ldots . .(2 r-1)}-\frac{1}{1 \cdot 3 \cdot 5 \ldots . .(2 r+1)}\right] \\
& =\frac{x}{2} \lim _{n \rightarrow \infty}\left[1-\frac{1}{1 \cdot 3 \cdot 5 \ldots \ldots .(2 n+1)}\right]=\frac{x}{2}
\end{aligned}
$$

$$
\text { Hence } \int_{0}^{4}[f(x)] d(x-[x])=\int_{0}^{4}\left[\frac{x}{2}\right] d x=\int_{0}^{2} 0 d x+\int_{2}^{4} 1 d x=2
$$

2. (C)

$$
\begin{aligned}
& f(n)=\sum_{r=1}^{n}\left[r^{2}\left({ }^{n} C_{r}-{ }^{n} C_{r-1}\right)+2 r{ }^{n} C_{r}+{ }^{n} C_{r}\right] \\
& =\sum_{r=1}^{n}\left[\left(r^{2}+2 r+1\right)^{n} C_{r}-r^{2}{ }^{n} C_{r-1}\right]=\sum_{r=1}^{n}\left[(r+1)^{2}{ }^{n} C_{r}-r^{2}{ }^{n} C_{r-1}\right]=\sum_{r=1}^{n}\left[V_{r+1}-V_{r}\right] \\
& =V_{n+1}-V_{1}=(n+1)^{2}{ }^{n} C_{n}-1=n^{2}+2 n
\end{aligned}
$$

3. (A)

The angle bisector of $\alpha x^{2}+\alpha y^{2}+\beta x y=0$ is $x^{2}-y^{2}=0$ again locus of centre will be angle bisector of $x^{2}-y^{2}=0$ hence locus is $x y=0$.
4. (C)
$\sin ^{6} \theta+\cos ^{6} \theta \leq 1$
$\Rightarrow\left(\sin ^{2} \theta+\cos ^{2} \theta\right)^{3}-3 \cos ^{2} \theta \sin ^{2} \theta\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \leq 1$
$\Rightarrow 1-3 \sin ^{2} \theta \cos ^{2} \theta \leq 1$
$\Rightarrow 3 \sin ^{2} \theta \cos ^{2} \theta \geq 0$
$\Rightarrow \frac{3}{4}(2 \sin \theta \cos \theta)^{2} \geq 0 \quad \Rightarrow \frac{3}{4}(\sin 2 \theta)^{2} \geq 0$
Statement 2 is not necessarily true.
5. (A)

Clearly $\frac{\sin A}{A}>\frac{2}{\pi}$
$\Rightarrow \frac{\sin A}{A}+\frac{\sin B}{B}+\frac{\sin C}{C}>\frac{6}{\pi}$

6. (A)

$$
f^{r}(x)=\left(x^{n}-r\right)^{\frac{1}{n}} \Rightarrow \int\left(f^{6}(x)\right)^{n} d x=\int\left(x^{n}-6\right) d x=\frac{x^{n+1}}{n+1}-6 x+c
$$

7. (D)

Since base $A B$ of the triangle in fixed, therefore for maximum area of $\triangle P A B$, height of the triangle should be maximum. This is possible only when P lies on the perpendicular bisector of $A B$.
Equation of perpendicular bisector of $A B$ is $y-6=-\frac{1-7}{2-10}(x-4)$ or $3 x+4 y-36=0$.
8. (B)
$2 R(\sin A+\sin B+\sin C)=r \Rightarrow \tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2}=2$
But we know that $\tan \frac{A}{2} \tan \frac{B}{2} \tan \frac{C}{2} \leq \frac{1}{3 \sqrt{3}}$. Hence no such triangle is possible.
9. (D)

$$
\begin{aligned}
& \ell=\lim _{n \rightarrow \infty}\left(\frac{n!}{n^{n}}\right)^{1 / n} \Rightarrow \log \ell=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{r=1}^{n} \log \frac{r}{n}=\int_{0}^{1} \log x d x=-1 \\
& \Rightarrow \ell=\frac{1}{e}
\end{aligned}
$$

10. (B)

Let $A\left(t_{1}\right), B\left(t_{2}\right)$ and $C\left(t_{3}\right)$ be points on the parabola. Since $A B$ is perpendicular to $B C$

$$
\begin{array}{ll}
\Rightarrow \frac{4}{\left(t_{1}+t_{2}\right)\left(t_{2}+t_{3}\right)}=-1 & \Rightarrow t_{2}^{2}+t_{2}\left(t_{1}+t_{3}\right)+t_{1} t_{3}+4=0 \\
\text { Discriminant } \geq 0 \Rightarrow\left(t_{1}+t_{3}\right)^{2} \geq 4\left(t_{1} t_{3}+4\right) & \Rightarrow\left(t_{1}-t_{3}\right)^{2} \geq 16 \quad \Rightarrow\left|t_{1}-t_{3}\right| \geq 4
\end{array}
$$

\therefore Minimum length of intercept $=\left|\mathrm{t}_{1}-\mathrm{t}_{3}\right|=4$
11. (A)

Let required angle is θ
$\therefore \cos (90-\theta)=\left|\frac{(\bar{a} \times \bar{b}) \cdot(\bar{b} \times \bar{c})}{|\overline{\mathrm{a}} \times \overline{\mathrm{b}}||\overline{\mathrm{b}} \times \overline{\mathrm{c}}|}\right|=\left|\frac{((\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times \overline{\mathrm{b}}) \cdot \overline{\mathrm{c}}}{\sin ^{2} \alpha}\right|$
$=\left|\frac{[(\bar{a} \cdot \bar{b}) \overline{\mathrm{b}}-(\overline{\mathrm{b}} . \overline{\mathrm{b}}) \overline{\mathrm{a}}] \cdot \overline{\mathrm{c}}}{\sin ^{2} \alpha}\right|=\left|\frac{\cos ^{2} \alpha-\cos \alpha}{\sin ^{2} \alpha}\right|=\left|\frac{\cos \alpha \cdot 2 \sin ^{2} \frac{\alpha}{2}}{\sin \alpha \cdot 2 \sin \frac{\alpha}{2} \cos \frac{\alpha}{2}}\right|=\left|\cot \alpha \tan \frac{\alpha}{2}\right|$
$\therefore \theta=\sin ^{-1}\left(\tan \frac{\alpha}{2}|\cot \alpha|\right)$
12. (A)

$$
\tan \left(7 x^{\circ}\right)=\tan 134^{\circ} \Rightarrow 7 x=180^{\circ} n+134(n \in Z)
$$

$\Rightarrow x=25 n+\frac{1+5 n}{7}+19 \Rightarrow$ Least possible value of $n=4$
\Rightarrow Least value of $x=122$
13. (B)

$$
\left|\operatorname{Adj} \mathrm{A}^{-1}\right|=\left|\mathrm{A}^{-1}\right|^{2}=\frac{1}{|\mathrm{~A}|^{2}} \quad \therefore\left|\left(\operatorname{adj} \mathrm{~A}^{-1}\right)^{-1}\right|=\frac{1}{\left|\operatorname{adj} \mathrm{~A}^{-1}\right|}=|\mathrm{A}|^{2}=4
$$

14. (C)

$$
\begin{aligned}
& \because \frac{1}{\sqrt{n+\sqrt{n^{2}-1}}}=\frac{1}{\sqrt{\left(\sqrt{\frac{n+1}{2}}+\sqrt{\frac{n-1}{2}}\right)^{2}}}=\frac{1}{\sqrt{\frac{n+1}{2}}+\sqrt{\frac{n-1}{2}}}=\frac{\sqrt{\frac{n+1}{2}}-\sqrt{\frac{n-1}{2}}}{\frac{n+1}{2}-\frac{n-1}{2}} \\
& =\sqrt{\frac{n+1}{2}}-\sqrt{\frac{n-1}{2}}
\end{aligned}
$$

Hence $a+b \sqrt{2}=\sum_{n=1}^{49}\left(\sqrt{\frac{n+1}{2}}-\sqrt{\frac{n-1}{2}}\right)$
$\Rightarrow \mathrm{a}+\mathrm{b} \sqrt{2}=\left(\sqrt{\frac{2}{2}}-0\right)+\left(\sqrt{\frac{3}{2}}-\sqrt{\frac{1}{2}}\right)+\left(\sqrt{\frac{4}{2}}-\sqrt{\frac{2}{2}}\right)+\left(\sqrt{\frac{5}{2}}-\sqrt{\frac{3}{2}}\right)+\ldots \ldots+\left(\sqrt{\frac{49+1}{2}}-\sqrt{\frac{49-1}{2}}\right)$
$=\sqrt{\frac{49+1}{2}}+\sqrt{\frac{48+1}{2}}-\frac{1}{\sqrt{2}}-0=5+3 \sqrt{2} \quad \Rightarrow a=5, b=3$ and $a+b=8$.
15. (C)

$$
\text { since }-1<x<1 \text { hence }-1<\alpha_{1}<1 \text { and }-1<\alpha_{2}<1 \quad \Rightarrow\left|\alpha_{1}-\alpha_{2}\right|<2 \Rightarrow k=2
$$

16. (C)

Minimum value of $\left(x_{1}-x_{2}\right)^{2}+\left(\sqrt{2-x_{1}^{2}}-\frac{9}{x_{2}}\right)^{2}, x_{1} \in(0, \sqrt{2}) \& x_{2} \in R^{+}$is equivalent to square of minimum distance between two curves $y=\sqrt{2-x^{2}} \& y=\frac{9}{x}$
Since minimum distance is along common normal for curve $y=\frac{9}{x} \Rightarrow \frac{d y}{d x}=-\frac{9}{x^{2}}$
\therefore Normal is $\mathrm{y}-\mathrm{y}_{2}=\frac{\mathrm{x}_{2}^{2}}{9}\left(\mathrm{x}-\mathrm{x}_{2}\right)$
This normal passes through $(0,0) \quad$ [as $y=\sqrt{2-x^{2}}$ is semicircle]
$9 y_{2}=x_{2}^{3} \Rightarrow 9 \cdot \frac{9}{x_{2}}=x_{2}^{3} \Rightarrow x_{2}=3, y_{2}=3$
\therefore Minimum distance $=\sqrt{3^{2}+3^{2}}-\sqrt{2}=2 \sqrt{2}$
\therefore Minimum value of given expression $=(2 \sqrt{2})^{2}=8$
17. (D)
$A \int \frac{x^{3}}{y} d x+B \int \frac{x^{2}}{y} d x+C \int \frac{x}{y} d x=x^{2} y$
differentiating both sides
$\frac{A x^{3}+B x^{2}+C x}{y}=2 x y+x^{2} \frac{d y}{d x}$
$\Rightarrow \mathrm{Ax}^{3}+\mathrm{Bx}^{2}+\mathrm{Cx}=2 \mathrm{xy}^{2}+\mathrm{x}^{2} \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=2 x\left(x^{2}-x+1\right)+x^{2}\left(\frac{2 x-1}{2}\right)=3 \mathrm{x}^{3}-\frac{5}{2} \mathrm{x}^{2}+2 \mathrm{x}$
$\Rightarrow A=3, B=-\frac{5}{2}, C=2$
18. (D)

$$
\begin{array}{ll}
f(x)=\frac{1}{4} x^{4}-\frac{2 \lambda}{3} x^{3}-2(\lambda-6) x^{2}+2 & \text { for concave upward, } f^{\prime \prime}(x)>0 \\
f^{\prime}(x)=x^{3}-2 \lambda x^{2}-4(\lambda-6) x & \Rightarrow f^{\prime \prime}(x)=3 x^{2}-4 \lambda x-4(\lambda-6) \\
\text { since } f^{\prime \prime}(x)>0, \forall x \in R & \Rightarrow D<0 \\
\Rightarrow 16 \lambda^{2}+4.3 .4(\lambda-6)<0 & \Rightarrow \lambda \in(-6,3)
\end{array}
$$

19. (C)

Let the roots are $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$
$\Rightarrow x_{1}+x_{2}+x_{3}+x_{4}=12$ and $x_{1} x_{2} x_{3} x_{4}=81 \Rightarrow \frac{x_{1}+x_{2}+x_{3}+x_{4}}{4}=3$ and $\left(x_{1} x_{2} x_{3} x_{4}\right)^{1 / 4}=3$
since A.M. $=$ G.M. $\Rightarrow x_{1}=x_{2}=x_{3}=x_{4}=3$
$\Rightarrow \mathrm{x}^{4}-12 \mathrm{x}^{3}+\mathrm{bx}{ }^{2}+\mathrm{cx}+81=(\mathrm{x}-3)^{4} \quad \Rightarrow \mathrm{~b}=54, \mathrm{c}=-108$
20. (B)
$y=2 x \tan ^{-1} x-\ln \left(1+x^{2}\right)$
$\frac{d y}{d x}=2 \tan ^{-1} x$
Since $\frac{d y}{d x}>0, \forall x \in R^{+} \Rightarrow f(x) \geq f(0), \forall x \in[0, \infty)$. Hence $y \geq 0, \forall x \in[0, \infty)$
\therefore Possible value of $5-|[x]|$ are $0,1,2,3,4,5$.
Since $|\alpha| \leq 5-|[x]| \Rightarrow \alpha=0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5$
Hence number of value of α is 11 .
21. (D)

A $=\frac{\pi}{2} \Rightarrow b^{2}+c^{2}=a^{2}$
$(b+c)^{2}-2 b c=a^{2}$
$(b+c)^{2}-a^{2}=2 b c=4 \Delta$
$(b+c-a)(b+c+a)=4(a+b+c)$
$\Rightarrow \mathrm{b}+\mathrm{c}-\mathrm{a}=4$
22. (A)

$$
|z-2-2 i|=|z-6-6 i| \Rightarrow a+b=8
$$

$\Rightarrow A=\{(2,6),(3,5),(4,4),(5,3),(6,2)\}$
$\arg (z-4-4 i)=\pi / 4 \quad \Rightarrow a=b$ and $a, b>4 \quad \Rightarrow B=\{(5,5),(6,6)\}$
23. (A)

$$
V^{2}=\frac{1}{36}[\overline{\mathrm{a}} \overline{\mathrm{~b}} \overline{\mathrm{c}}]^{2}=\frac{1}{36}\left|\begin{array}{lll}
\overline{\mathrm{a}} . \overline{\mathrm{a}} & \overline{\mathrm{a}} \cdot \overline{\mathrm{~b}} & \overline{\mathrm{a}} \cdot \overline{\mathrm{c}} \\
\overline{\mathrm{~b}} \cdot \overline{\mathrm{a}} & \overline{\mathrm{~b}} \cdot \overline{\mathrm{~b}} & \overline{\mathrm{~b}} \cdot \overline{\mathrm{c}} \\
\overline{\mathrm{c}} . \overline{\mathrm{a}} & \overline{\mathrm{c}} . \overline{\mathrm{b}} & \overline{\mathrm{c}} \cdot \overline{\mathrm{c}}
\end{array}\right| \Rightarrow \quad \mathrm{V}=\frac{1}{12} \sqrt{3 \sqrt{3}-5}
$$

24. (C)
$(\sin \theta+\cos \theta) \tan \theta=|\tan \theta|$ clearly $\theta=0, \pi, 2 \pi$ are solutions
Case -I: if $\tan \theta>0$, then $\sin \theta+\cos \theta=1$
$\therefore \sin \left(\theta+\frac{\pi}{4}\right)=\sin \frac{\pi}{4}$
i.e. $\theta+\frac{\pi}{4}=n \pi+(-1)^{n} \frac{\pi}{4}$ gives no solution

Case - II: if $\tan \theta<0$
$\sin \theta+\cos \theta=-1$
$\therefore \sin \left(\theta+\frac{\pi}{4}\right)=-\sin \frac{\pi}{4}$
$\therefore \theta+\frac{\pi}{4}=\mathrm{n} \pi+(-1)^{\mathrm{n}}\left(-\frac{\pi}{4}\right)$ gives no solution
$\therefore \quad$ Number of solutions is 3 .
25. (D)

$$
\begin{aligned}
& \tan ^{2} \frac{\pi}{16}+\tan ^{2} \frac{7 \pi}{16}+\tan ^{2} \frac{2 \pi}{16}+\tan ^{2} \frac{6 \pi}{16}+\tan ^{2} \frac{3 \pi}{16}+\tan ^{2} \frac{5 \pi}{16}+1 \\
& =\tan ^{2} \frac{\pi}{16}+\cot ^{2} \frac{\pi}{16}+\tan ^{2} \frac{2 \pi}{16}+\cot ^{2} \frac{2 \pi}{16}+\tan ^{2} \frac{3 \pi}{16}+\cot ^{2} \frac{3 \pi}{16}+1 \\
& =\left(\tan \frac{\pi}{16}-\frac{1}{\tan \frac{\pi}{16}}\right)^{2}+\left(\tan \frac{2 \pi}{16}-\frac{1}{\tan \frac{2 \pi}{16}}\right)^{2}+\left(\tan \frac{3 \pi}{16}-\frac{1}{\tan \frac{3 \pi}{16}}\right)^{2}+1+6 \\
& =\frac{4}{\tan ^{2} \frac{\pi}{8}}+\frac{4}{\tan ^{2} \frac{2 \pi}{8}}+\frac{4}{\tan ^{2} \frac{3 \pi}{8}}+7=\frac{4}{\tan ^{2} \frac{\pi}{8}}+4 \tan ^{2} \frac{\pi}{8}+11
\end{aligned}
$$

$$
=4\left(\tan \frac{\pi}{8}-\frac{1}{\tan \frac{\pi}{8}}\right)^{2}+8+11=4 \times \frac{4}{\tan ^{2} \frac{\pi}{4}}+19=35
$$

26. (C)

Line passes through point (2, 4)
slope of $\mathrm{PA}=\frac{3}{4}$

slope of $\mathrm{PB}=\frac{5}{12}$ $\therefore \mathrm{k} \in\left(\frac{5}{12}, \frac{3}{4}\right]$
27. (C)
$x^{2}-b_{n} x+\frac{10^{n}-1}{9}=n$
$\Rightarrow x^{2}-b_{n} x+\frac{10^{n}-9 n-1}{9}=0$
Product of roots $\alpha \beta=\frac{10^{n}-9 n-1}{9}$
$=\frac{1}{9}\left[{ }^{n} C_{0} 9^{n}+{ }^{n} C_{1} 9^{n-1}+{ }^{n} C_{2} 9^{n-2}+\ldots .+{ }^{n} C_{n-2} 9^{2}\right]$
Which is divisible by 9
Hence these equation can have 9 as a common root.
But 9 is not the root for all the equations as $\alpha \beta$ has other divisors, also for example $\mathrm{n}=4$
$\Rightarrow \alpha \beta={ }^{4} \mathrm{C}_{0} 9^{3}+{ }^{4} \mathrm{C}_{1} 9^{2}+{ }^{4} \mathrm{C}_{2} 9 \quad=9 \times 123$
One equation has 123 as a root.
28. (D)

Let $A B=B C=C D=D E$
The longest piece will be at least 3 times as long as the shortest piece if we cut between A and B or between D and E .
Probability $=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$
29. (B)
$\left(1+x+x^{2}\right)^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\ldots . .+a_{2 n} x^{2 n}$
$n\left(1+x+x^{2}\right)^{n-1}(1+2 x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\ldots \ldots$.
Put $x=1, n 3^{n}=a_{1}+2 a_{2}+3 a_{3}+4 a_{4}+5 a_{5}+6 a_{6}+\ldots \ldots$.
Put $x=\omega, 0=a_{1}+2 a_{2} \omega+3 a_{3} \omega^{2}+4 a_{4}+5 a_{5} \omega+6 a_{6} \omega^{2}+\ldots .$.
Put $x=\omega^{2}, 0=a_{1}+2 a_{2} \omega^{2}+3 a_{3} \omega+4 a_{4}+5 a_{5} \omega^{2}+6 a_{6} \omega+\ldots \ldots$.
Adding (i), (ii) and (iii) $n 3^{n-1}=a_{1}+4 a_{4}+7 a_{7}+10 a_{10}+\ldots \ldots$
30. (B)

Centre of the circle is given by $x=t^{2}-3 t+1, y=t^{2}+2 t$ eliminating t,
we get $x^{2}-2 x y+y^{2}-12 x-13 y+11=0$ (the required locus)

SECTION II : PHYSICS

31. (D)

In steady state potential difference across each capacitor $=\mathrm{E}$
32. (B)
33. (A)
$A B$ process is a isothermal, $B C$ is isochoric and $C A$ is isobaric
34. (B)

Net flux in x-direction $=0$
Net flux in y-direction
$=A\left[3(1)^{2}+2\right]-A[3(0)+2]$
$\Rightarrow \frac{q}{\varepsilon_{0}}=3 A$

$\Rightarrow q=3 \in_{0} A=3 \in_{0},\left(\right.$ as $\left.A=1 m^{2}\right)$
35. (C)
$\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}} \Rightarrow \mathrm{R}=\frac{\mathrm{V}^{2}}{\mathrm{P}^{2}}=\frac{300^{2}}{100}=900 \Omega$
\therefore current $\mathrm{i}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{300}{900}=\frac{1}{3} \mathrm{~A}$
Let L be the required inductance, then
$\frac{500}{z}=\frac{1}{3}$ or $\frac{500}{\sqrt{(900)^{2}+x_{2}^{2}}}=\frac{1}{3}$
$X_{L}=1200 \Omega$
$L=\frac{1200}{W}=\frac{1200}{2 \pi f}=\frac{1200}{2 \pi \times \frac{150}{\pi}}=4 \mathrm{H}$
36. (A)
37. (A)
$\mathrm{i}=\sqrt{5} \mathrm{~A}$
$\frac{q_{m}^{2}}{2 C}=\frac{q^{2}}{2 C}+\frac{1}{2} L i^{2} \Rightarrow q_{\max }=6 C$
38. (C)

The field at P due to current i along x-axis is $\frac{\mu_{0} i}{4 \pi a} \hat{k}$, and due to the current $\frac{i}{2}$ along z-axis is $\frac{\mu_{0} i}{8 \pi a} \hat{i}$.

The resultant field at P is $\frac{\mu_{0} i}{4 \pi a} \sqrt{1^{2}+\left(\frac{1}{2}\right)^{2}}=\frac{\sqrt{5}}{8} \frac{\mu_{0} i}{\pi a}$

39. (A)
$\frac{\lambda_{A}}{\lambda_{B}}=\frac{1}{2}$
Probabilities of getting α and β particles are same. Thus rate of disintegration are equal

$$
\therefore \lambda_{A} N_{A}=\lambda_{B} N_{B} \quad \text { or } \frac{N_{A}}{N_{B}}=\frac{\lambda_{B}}{\lambda_{A}}=2
$$

40. (B)

Here counting rate decrease to $\frac{1}{16}$ th of initial in $3 t$ second.
So half life time is $T_{\frac{1}{2}}=\frac{3}{4} t$
$\frac{9}{2} t$ corresponds to six half life time
\therefore counting rate is $\frac{N_{0}}{64}$
41. (D)

Force and velocity are perpendicular to each other
So, $\vec{F} . \vec{v}=0$
$2+4+\lambda=0$
$\lambda=-6$
42. (B)
$\Delta \mathrm{x}=\mathrm{d} \sin \theta=\mathrm{n} \lambda, \sin \theta=\frac{\mathrm{n} \lambda}{\mathrm{d}}, \frac{\mathrm{n} 7000}{2000} \leq 1, \mathrm{n} \leq 3.5 \quad \mathrm{n}=3$
Three maximum are formed on both side of central maxima therefore total maxima will be 7 .
43. (C)
$f_{0}=\frac{v}{2 l_{0}}$ and $f_{e}=\frac{v}{4 l_{c}}$
Since, tube is half dipped in water, $l_{c}=\frac{l_{0}}{2} \quad \therefore f_{c}=\frac{v}{4\left(\frac{l_{0}}{2}\right)}=\frac{v}{2 l_{0}}=f_{0}=f$
44. (D)

Mirror will look at a distance at $\frac{t}{\mu}=\frac{1}{4 / 3}=\frac{3}{4} \mathrm{~m}$ from water surface and mirror will be at distance of $\left(2+\frac{3}{4}\right) \mathrm{m}$ from bird.
Image of bird from bird is $2 \times \frac{11}{4}=\frac{11}{2} \mathrm{~m}$
45. (D)

Energy of the electron is $3 \times 10^{4} \mathrm{eV}$
So the maximum momentum of photon is $P=\frac{h v}{c}=\frac{3 \times 10^{4} \times 1.6 \times 10^{-19}}{3 \times 10^{8}}=1.6 \times 10^{-23} \mathrm{~N}-\mathrm{s}$
46. (C)
$\mathrm{g}=\frac{\mathrm{GM}}{\mathrm{R}^{2}}$
$\mathrm{g} \propto \frac{1}{\mathrm{R}^{2}} ;$ of M is same
47. (A)
$\int \overrightarrow{\mathrm{B}} . \mathrm{d} \overrightarrow{\mathrm{L}}=\mu_{0} \mathrm{l}$
B $2 \pi r=\mu_{0} \int \frac{J_{0} r}{a} 2 \pi r d r$
48. (B)
49. (B)

Let equation of motion of one particle be $x=x_{0} \sin \omega t$ and $v=v_{0} \cos \omega t$
For the second particle, $x^{\prime}=x_{0} \sin (\omega t+\phi)$ and $v^{\prime}=v_{0} \cos (\omega t+\phi)$ where ϕ is phase difference between the two SHMs.

From question, $x=-x^{\prime}$ and $v=-v^{\prime}$
50. (A)
51. (B)

Rate of change of speed $\left(\frac{d v}{d t}\right)=\frac{\text { tangential force }}{\text { mass }}=\frac{m g \sin 30^{\circ}}{m}=g \sin 30^{\circ}$
$=10\left(\frac{1}{2}\right) \mathrm{m} / \mathrm{s}^{2}=5 \mathrm{~m} / \mathrm{s}^{2}$
52. (D)
$40 \cos 60^{\circ}=\mathrm{v}^{\prime} \cos 30^{\circ}$
$\mathrm{g}_{\perp}=\mathrm{g} \cos 30^{\circ}$
$40 \times \frac{1}{2}=\mathrm{v}^{\prime} \times \frac{\sqrt{3}}{2}$

$R=\frac{v^{\prime 2}}{g \times \frac{\sqrt{3}}{2}}=\frac{(40)^{2} \times 2}{3 \times 10 \times \sqrt{3}}=\frac{3200}{3 \times 10 \times \sqrt{3}}=\frac{320}{3 \sqrt{3}}$
53. (C)

At $B, m g \sin \beta=\frac{m v_{B}^{2}}{r}$
Using energy considerations
$\frac{1}{2} m v_{B}^{2}=\operatorname{mgr}(\cos \alpha-\sin \beta)$
From (1) and (2)
$\mathrm{mg} \sin \beta=2 \mathrm{mg}(\cos \alpha-\sin \beta)$
$2 \cos \alpha=3 \sin \beta$
54. (A)
$\frac{\mathrm{d} x}{\mathrm{dt}}=0 ; \mathrm{t}=1.5 \mathrm{sec} ;$
$\begin{array}{ll} & \\ t=1 \\ t=2 & |x|=0.25 \mathrm{~m} ; t=1.5\end{array}$
Total distance from $t=1 \mathrm{sec}$ to $\mathrm{t}=2 \mathrm{sec}$
$=0.25+0.25$
$=0.5 \mathrm{~m}$
55. (A)

For adiabatic process, $\mathrm{TV}^{\gamma-1}=$ constant
$T\left(\frac{m}{\rho}\right)^{y-1}=$ constant
$\frac{\mathrm{T}}{\rho^{z-1}}=$ constant
$\rho \propto \mathrm{T}^{1 /(\gamma-1)} \Rightarrow \frac{1}{\gamma-1}=3 \Rightarrow \gamma=4 / 3$
$\mathrm{f}=\frac{2}{\gamma-1}=\frac{2}{\left(\frac{4}{3}-1\right)}=6$
56. (B)

Pressure at point B will be atmospheric if layer of water will be as shown
Hence $\tan \theta=\frac{5}{2.5}=2=\frac{a}{g}$ or $\mathrm{a}=2 g$

57. (A)
58. (D)

Maximum stress on the wire will be at highest point (at the point of suspension)
\therefore stress $=\frac{\text { weight }}{A}=\frac{A l \rho g}{A}=\sigma$
$\therefore I=\frac{\sigma}{\rho g}$
59. (B)

Just after collision, B will have only linear velocity v and A will have only angular velocity ω. Long time after collision both will have pure rolling in same direction
60. (A)

$$
\mathrm{U}_{\text {potential }}=-\frac{\mathrm{GMm}}{\mathrm{r}}
$$

Kinetic Energy $=\frac{1}{2} \mathrm{~m} \times \frac{\mathrm{GM}}{\mathrm{r}}=\frac{\mathrm{GMm}}{2 \mathrm{r}}$
When it will stop ; kinetic energy $=0$

SECTION III : CHEMISTRY

61. (D)
62. (A)
63. (C)

$$
\mathrm{A}(\mathrm{~s}) \rightleftharpoons \mathrm{B}(\mathrm{~s})+\mathrm{C}(\mathrm{~g})
$$

At eq. mole
$1 \quad 1, K_{p}=2=P_{c}$
So, no. of moles of $C(\mathrm{~g})$ will require to increase it's plessure by 2 atom $=1$ mole

$$
\mathrm{A}(\mathrm{~s}) \rightleftharpoons \mathrm{B}(\mathrm{~s})+\mathrm{C}(\mathrm{~g})
$$

Before eq. mole	1	1	2
At new eq. mole	2	0	1

64. (A)
65. (B)
66. (A)
67. (B)
68. (B)
69. (A)
70. (C)
71. (A)
72. (C)
73. (D)

74. (D)

75. (C)
76. (A)
$\alpha-D-G l u c o s e$ is a hemiacetal structure.
77. (A)

It is most acidic as electron density present at the N -atom is being attracted by $\mathrm{C}=\mathrm{O}$ group present towards both side of imide (-NH) group.
78. (C)

79. (C)

It is idoform reaction

80. (A)
81. (A)
82. (D)

In high pH i.e. basic medium, acidic H is taken by base.
83. (C)
84. (D)
85. (B)

Let x moles of NaHCO_{3}, (0.3-x) moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
\mathrm{NaHCO}_{3}+\mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

BR mole
x
$0.1 \quad(0.3-x) \quad 0$
AR mole $0 \quad \begin{array}{lll}x & (0.1-x) & 0.3\end{array}$
$\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \rightarrow 2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{NaOH}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
So, total moles of HCl required w.r.t. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{NaOH}=0.3 \times 2+(0.1-\mathrm{x})=0.7-\mathrm{x}$
$\therefore 0.7-\mathrm{x}=0.5$

$$
x=0.2
$$

86. (B)
87. (B)
$\lambda=\frac{\ln \frac{5}{4}}{2}=\frac{\ln \frac{500}{x}}{4}$
$2 \ell n \frac{5}{4}=\ln \frac{500}{x}$
$\left(\frac{5}{4}\right)^{2}=\frac{500}{x}$
$x=320$
88. (B)
$\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-} ; \quad \mathrm{K}_{1}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
$\mathrm{HB} \rightleftharpoons \mathrm{H}^{+}+\mathrm{B}^{-} ; \quad \mathrm{K}_{2}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{B}^{-}\right]}{[\mathrm{HB}]}$
By mass balance, $\quad[\mathrm{HA}]_{\text {initial }}=[\mathrm{HA}]_{e q}+\left[\mathrm{A}^{-}\right]=\mathrm{C}_{1}$,
$[\mathrm{HB}]_{\text {initial }}=[\mathrm{HB}]_{\text {eq }}+\left[\mathrm{B}^{-}\right]=\mathrm{C}_{2}$
By charge balance, $\quad\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]+\left[\mathrm{B}^{-}\right]$

$$
\left[\mathrm{H}^{+}\right]=\frac{\mathrm{K}_{1}[\mathrm{HA}]}{\left[\mathrm{H}^{+}\right]}+\frac{\mathrm{K}_{2}[\mathrm{HB}]}{\left[\mathrm{H}^{+}\right]}
$$

$\left[\mathrm{H}^{+}\right]^{2}=\mathrm{K}_{1}[\mathrm{HA}]+\mathrm{K}_{2}[\mathrm{HB}]=\mathrm{K}_{1}\left\{\mathrm{C}_{1}-\left[\mathrm{A}^{-}\right]\right\}+\mathrm{K}_{2}\left\{\mathrm{C}_{2}-\left[\mathrm{B}^{-}\right]\right\}$
If $\mathrm{K}_{1}, \mathrm{~K}_{2}$ are very less then
$\left[H^{+}\right]=\sqrt{K_{1} C_{1}+K_{2} C_{2}+\ldots K_{n} C_{n}}=\sqrt{\sum_{i=1}^{n} K_{i} C_{i}}$ for ' n ' number of weak acids
89. (A)

To compute resonance energy, we compare the calculated value of $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ (benzene, g) with the given one. To calculate $\Delta \mathrm{H}_{\mathrm{f}}^{\circ}$ (benzene, g), we add the following reactions.

$$
\begin{array}{ll}
6 \mathrm{C}(\mathrm{~g})+6 \mathrm{H}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=-\left(3 \mathrm{~B} \cdot \mathrm{E}_{\mathrm{C}-\mathrm{C}}+3 \mathrm{~B} \cdot \mathrm{E}_{\mathrm{C}=\mathrm{C}}+6 \mathrm{~B} \cdot \mathrm{E}_{\mathrm{C}-\mathrm{H}}\right) \\
6 \mathrm{C}(\text { graphite }) \rightarrow 6 \mathrm{C}(\mathrm{~g}) & \Delta \mathrm{H}^{\circ}=6 \times 718.4 \mathrm{~kJ} / \mathrm{mol} \\
\text { Add } & \Delta \mathrm{H}^{\circ}=3 \times 435.9 \mathrm{~kJ} / \mathrm{mol} \\
\frac{3 \mathrm{~g}) \rightarrow 6 \mathrm{H}(\mathrm{~g})}{2 \mathrm{C}(\text { graphite })+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})}
\end{array}
$$

The corresponding enthalpy change is

$$
\begin{aligned}
& \begin{aligned}
\Delta \mathrm{H}_{\mathrm{f}}^{0} & =-\left(3 \mathrm{~B} \cdot \mathrm{E}_{\mathrm{C}-\mathrm{C}}+3 \mathrm{~B} \cdot \mathrm{E}_{\mathrm{C}=\mathrm{C}}+6 \mathrm{~B} \cdot \mathrm{E}_{\mathrm{C}-\mathrm{H}}\right)+[6 \times 718.4+3 \times 435.9] \mathrm{kJ} / \mathrm{mol} \\
& =[-(3 \times 331.4+3 \times 591.1+6 \times 416.3)+(6 \times 718.4+3 \times 435.9)] \mathrm{kJ} / \mathrm{mol} \\
\Delta \mathrm{H}_{\mathrm{f}}^{0} & =352.8 \mathrm{~kJ} / \mathrm{mol}
\end{aligned} \\
& \text { Resonance energy }=\Delta \mathrm{H}_{\mathrm{f}}(\exp .)-\Delta \mathrm{H}_{\mathrm{f}}(\text { Cal. }) \text { CdUCate } \\
& \qquad=82.9-352.8=-269.7 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

90. (A)
